

mV transmitter

2261

- Load cell amplifier
- mV to current / voltage conversion
- Front-programmable / LED display
- Relative calibration of input span
- NPN / PNP input for external taring
- Supply for standard transducers

ERI C€

Advanced features

 A multifunction user interface consisting of three pushbuttons and a 3-digit LED display for programming.

Application

- The 2261 converts bipolar mV signals from transducers supplied directly by the device to standard current / voltage signals.
- The 2261 is suitable for load cell application as well as other applications such as tank filling and draining, weighing with a taring function, measurement of cable tensile force, level control, signal conversion / amplification etc.

Technical characteristics

- Front error LED.
- The analog input can be programmed for voltage in the range -40...100 mVDC.
- The digital signal can be selected as either NPN or PNP.
- Taring can either be by way of the digital input or from the front interface.
- The analog output can be programmed to current in the range 0...20 mA or voltage in the range 0...10 VDC.
- Short circuit protected transducer supply which can be programmed to 5...13 VDC from the front.
- Sense input (with transducer supply used) for compensation for cable resistance to the transducer.
- Mounting for a standard 11-pole socket which can be adapted for DIN rail or plate use with PR's 7023 adaptor and 7024 mounting keying.

Туре 2261

Environmental Conditions

Specifications range	-20°C to +60°C
Calibration temperature	2028°C
Relative humidity	< 95% RH (non-cond.)
Protection degree	IP50

Mechanical specifications

Dimensions (HxWxD)	80.5 x 35.5 x 84.5 mm (D is
,	without pins)
Weight approx	130 a

Common specifications

Response time (programmable)	0.06999 s
Max. required power	7.2 W
Internal consumption	. 2.2 W
Signal / noise ratio	Min. 60 dB
Updating time	20 ms
Signal dynamics, input	17 bit
Signal dynamics, output	16 bit
Effect of supply voltage change	
Temperature coefficient	< ±0.01% of span / °C
Linearity error	< 0.1% of span
Auxiliary voltage: Transducer	
supply	
Load (max.)	
EMC immunity influence	< ±0.5% of span

Input specifications

Common input specifications

Max. offset.......70% of selec. max. value

Voltage input

Measurement range	-40100 mV
Min. measurement range (span)	10 mV
Input resistance	> 10 MΩ

Overrange	0999% of selected
_	measurement range
NPN, digital input	Pull up 24 VDC / 6.9 mA
PNP, digital input	Pull down 0 VDC / 6.9 mA
Trig level low NPN/PNP	< 6 V/DC

Output specifications

Current output Signal range	5 mA ≤ 600 Ω ≤0.01% of span / 100 Ω	
Voltage output through internal shunt*of span*		

Observed authority requirements

FMC.		2014/30/FU

Approvals

EAC...... TR-CU 020/2011