
ControlEdge PLC
ControlEdge RTU
Release 174.1

ControlEdge Builder Protocol
Configuration Reference Guide

RTDOC-X288-en-174A

December 2022



DISCLAIMER
This document contains Honeywell proprietary information.
Information contained herein is to be used solely for the purpose
submitted, and no part of this document or its contents shall be
reproduced, published, or disclosed to a third party without the
express permission of Honeywell International Sàrl.

While this information is presented in good faith and believed to be
accurate, Honeywell disclaims the implied warranties of
merchantability and fitness for a purpose and makes no express
warranties except as may be stated in its written agreement with and
for its customer.

In no event is Honeywell liable to anyone for any direct, special, or
consequential damages. The information and specifications in this
document are subject to change without notice.

Copyright 2022 - Honeywell International Sàrl

2



3

CONTENTS
Chapter 1 - About this guide 7

Chapter 2 - Overview 11

Chapter 3 - HART Configuration 13
Configuring a HART IP Server 13

Configuring a HART Function Block 14

Chapter 4 - DNP3 Outstation Configuration 17
Configuring a DNP3 Outstation 17

Chapter 5 - DNP3 Master Configuration 33
Configuring a DNP3 Master 33

Programming a DNP3 Master 33

Description of DNP3 Master Function Block 35

DNP3_RD 36

DNP3_WR 41

Description of CONFIG_INFO 45

Description of Input and Output Data Type 46

DNP3 Master Protocol Error Codes 46

Chapter 6 - Enron Modbus Slave Configuration 49
Configuring an Enron Modbus Slave 49

Chapter 7 - Modbus Slave Configuration 51
Configuring a Modbus Slave 51

Chapter 8 - Modbus Master Configuration 53
Modbus TCP Master 53

Configuring a Modbus TCP Master 53

Programming a Modbus TCP Master 53

Modbus Serial Master 56



Configuring a Modbus Serial Master 56

Programming a Modbus Serial Master 59

Description of Modbus Function Block 61

Read Single Coil 62

Read Multiple Coils 64

Read Single Discrete Input 66

Read Multiple Discrete Inputs 68

Read Single Input Register 70

Read Multiple Input Registers 72

Read Single Holding Register 74

Read Multiple Holding Registers 76

Write Single Coil 79

Write Single Holding Register 80

Write Multiple Coils 82

Write Multiple Holding Registers 84

Description of CONFIG_INFO 86

Description of Input and Output Data Type 89

Modbus Protocol Error Codes 89

Endian Mode 91

Chapter 9 - OPC UA Configuration 93
Introduction 93

OPC UA Security 95

Security Objectives 95

Application Instance Certificates 96

OPC UA Certificate Management 97

OPC UA Server Security 97

OPC UA Client 105

Securing a Connection 108

OPC UA Server 111

4



5

System Architecture and Profiles 111

Accessing the Server Object 113

Server Diagnostics 113

Accessing ControlEdge PLC data 114

Program Variable NodeIds 117

Data Types 118

Configure ControlEdge 900 controller OPC UA Server 125

OPC UA Client 132

IEC 61131-3 OPC UA Function Blocks 132

MDIS function block library 135

Usage Considerations 138

Establishing Connection with HonUaConnectSecurityNone 143

Accessing the Address Space of target OPC UA Server 144

Obtaining Nodelds with HonUaTranslatePathList 147

Reading a single variable 150

Reading a list of variables 151

Writing a single variable 153

Writing a list of variables 154

Calling a Method 155

Subscribing for single variable notifications 158

Terminate Connection with HonUaConnectSecurityNone 160

Monitoring the target OPC UA Server handle 161

Detecting Boolean Resets 161

Converting Variant Values to String 162

Configuring an OPC UA Client 163

Example logic for reading list of variables from OPC UA Server 166

OPC UA project sizing and performance 167

OPC UA Project Sizing 168

OPC UA Client Performance 173



OPC UA Server Performance 174

MDIS OPC UA Project Sizing 176

MDIS OPC UA Client Performance 177

MDIS OPC UA Server Performance 179

OPC UA Error Code Reference 179

Chapter 10 - CDA Configuration 201
Installing ControlEdge integration service 202

Configuring a CDA Responder 203

Publishing to Experion 205

Publishing when ControlEdge Builder is launched from Configuration
Studio 205

Publishing when ControlEdge Builder is launched separately on an
Experion node 205

Publishing when ControlEdge Builder is launched on non-Experion
node 206

Chapter 11 - MQTT Configuration 209
Configuring MQTT 209

Chapter 12 - IEC60870-5-104 Outstation Configuration 217
Configuring IEC60870-5-104 Outstation 217

Chapter 13 - User Defined Protocol 223
Configuring User Defined Protocol 223

Creating a data type for User Defined Protocol 225

Configuring User Defined Protocol Function Block 226

Notices 230

6



CHAPTER

1 ABOUT THIS GUIDE

Revision history

Revision Date Description

A December 2022 Initial release of this document

Intended audience

This documentation is intended for the following audience: users who
plan, install, configure, operate, or maintain the ControlEdge™ 900
and 2020 controller and I/O modules running the eCLR (IEC 61131-
3) execution environment.

Prerequisite skills

Knowledge of SCADA systems and experience of working in a
Microsoft Windows environment are required.

Introduction to ControlEdge Technology

Item Description

ControlEdge
PLC

ControlEdge 900 controllers running the eCLR (IEC 61131-3)
execution environment with PLC software options configured with
ControlEdge Builder.

ControlEdge
RTU

ControlEdge 2020 controllers running the eCLR (IEC 61131-3)
execution environment with RTU software options configured with
ControlEdge Builder.

ControlEdge
UOC

ControlEdge 900 controllers running the Honeywell control execution
environment (CEE) configured with Experion Control Builder.

Special terms

The following table describes some commonly used industry-wide
and Honeywell-specific terminology:

7



Terminology Description

CDA Control Data Access

ControlEdge 900
controller OPC UA

OPC UA runs on ControlEdge 900 controller

DNP3 Distributed Network Protocol V3.0

EFM Electronic Flow Measurement

Enron Modbus An extension of standard Modbus supports for 32-bit Integer
and Floating Point variables, and historical and flow data.

HART-IP HART-IP extends the HART protocol to Ethernet connected
nodes. This facilities host level systems and asset management
applications to access and integrate measurement and device
diagnostics information from HARTenabled field devices using
the existing plant networking infrastructure.

Modbus A communication protocol supports communication between
Modbus slave devices and Modbus master devices via serial port
or Ethernet port.

MQTT Message Queuing Telemetry Transport, an open OASIS and ISO
standard (ISO/IEC 20922) lightweight, publish-subscribe
network protocol that transports messages between devices. The
protocol runs over TCP/IP, or over other network protocols that
provide ordered, lossless, bi-directional connections.

OPC Open Platform Communications

OPC UA OPC Unified Architecture

QoS The Quality of Service (QoS) level is an agreement between the
sender and the receiver of a message that defines the guarantee
of delivery for a specific message. There are 3 QoS levels in
MQTT:

l At most once delivery (0);

l At least once delivery (1);

l Exactly once delivery (2).

SCADA Supervisory Control and Data Acquisition

Sparkplug Sparkplug provides an open and freely available specification for
how Edge of Network (EoN) gateways or native MQTT enabled

8

Chapter 1 - About this guide



9

Terminology Description

end devices and MQTT Applications communicate bi-
directionally within an MQTT Infrastructure.

TLS Transport Layer Security; TLS is a cryptographic protocol that
provide communications security over a computer network.

Related documents

The following list identifies publications that may contain
information relevant to the information in this document:

n Builder Software Installation User’s Guide

n ControlEdge Builder Software Change Notice

n ControlEdge PLC and ControlEdge RTU Getting started

n ControlEdge Builder User’s Guide

n ControlEdge 900 Platform Hardware Planning and Installation
Guide

n ControlEdge 2020 Platform Hardware Planning and Installation
Guide

n ControlEdge Builder Function and Function Block Configuration
Reference Guide

n ControlEdge PLC and ControlEdge RTU Network and Security
Planning Guide

n ControlEdge EtherNet/IP User's Guide

n ControlEdge RTU and PLC DNP3 Device Profile

n ControlEdge Bulk Configuration User's Guide

n Firmware Manager User Guide

n ControlEdge PLC PROFINET User's Guide

n ControlEdge RTU Electronic Flow Measurement User's Guide

Chapter 1 - About this guide



10

Chapter 1 - About this guide



CHAPTER

2 OVERVIEW

ControlEdge PLC and ControlEdge RTU supports various kinds of
protocol configuration. See the following table for details:

Protocol Description Supported by

DNP3 Outstation See DNP3 Outstation Configuration for more
information.

ControlEdge
PLC and
ControlEdge
RTU

DNP3 Master See DNP3 Master Configuration for more
information.

ControlEdge
RTU

Modbus Slave See Modbus Slave Configuration for more
information.

ControlEdge
PLC and
ControlEdge
RTU

HART-IP Sever See HART Configuration for more information. ControlEdge
PLC and
ControlEdge
RTU

Enron Modbus Slave See Enron Modbus Slave Configuration for more
information.

ControlEdge
RTU

Modbus Master See Modbus Master Configuration for more
information.

ControlEdge
PLC and
ControlEdge
RTU

OPC UA Client See OPC UA Client for more information. ControlEdge
PLC

OPC UA Server See OPC UA Server for more information. ControlEdge
PLC

CDA Responder See CDA Configuration for more information. ControlEdge
PLC

User Defined
Protocol

See User Defined Protocol for more information. ControlEdge
PLC and
ControlEdge

11



Protocol Description Supported by

RTU

MQTT See MQTT Configuration for more information. ControlEdge
RTU

Wireless I/O See "Configuring Wireless I/O" in ControlEdge
Builder User Guide for more information.

ControlEdge
RTU

EtherNet/IP See EtherNet/IP User's Guide for more
information.

ControlEdge
PLC

PROFINET See ControlEdge PLC PROFINET User Guide for
more information.

ControlEdge
PLC

12

Chapter 2 - Overview



CHAPTER

3 HART CONFIGURATION

HART supports two functionalities.

n HART IP client (FDM) communication
n HART Function Block communication

The controller enables the HART IP client to exchange information
with HART field devices connected to the AI/AO channels in the
controller via a HART-IP Server. Multiple HART IP clients can be
served by the controller at the same time. When the HART IP client
builds a HART command request and sends it to the TCP/IP port of
the HART-IP server, the HART-IP server responds to the HART IP
client with information from the field device. Since it takes time for
the controller to communicate with the field devices through onboard
or remote I/O cards, a delayed response mechanism is implemented.
The TCP /IP port of the HART-IP server is user-configurable and the
default port number is 5094. The end user may change the port
number if firewall configuration is required.

The controller enables HART function blocks to access to the HART
field devices through HART-enabled AI/AO channels. Currently HART
command 3, command 48 and command X are implemented.

Configuring a HART IP Server
A new project is created and a controller is added to the project in
ControlEdge Builder. See "Creating a project" and "Connecting a
controller" in ControlEdge Builder User's Guide for more details.

To set a controller as the HART IP Server:

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select HART IP to bind HART IP to the
Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

13



5. Click Configure Protocols > HART IP Server, select the target Ethernet
port and configure the port number in the Port. The default value
is 5094.

6. From the Home Page, click Configure I/O, and configure the target
AI or AO channel. For more information, see "Configuring I/O
modules and channels" in the ControlEdge Builder User's Guide.

7. Select the Enable checkbox for HART, and click Save.
8. Click Connect from the Home Page to connect a controller. For the

user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

9. Click Download from the Home Page to load the configuration of
HART IP to the controller.

Configuring a HART Function Block
From R151, two sets of HART function blocks are provided, HART and
HART_V2. HART _V2 is recommended to be used.

Follow the instructions below to program the HART device for the
project in IEC Programming Workspace.

To configure a HART function block:

1. From the IEC Programming Workspace, under the Project Tree
Window, right-click Logical POUs and select Insert > Program.

2. Enter the Name for the new POU, and select the desired
programming Language. For the following steps, FBD language is
used as an example.

3. Click OK to insert the new POU in the project tree.
4. Add a Task as follows:

a. Under Physical Hardware, right-click Task and select Insert > Task.
b. Enter the Name and select the task type as CYCLIC, and click

OK.
c. In the Task settings dialog, configure the corresponding

parameters.
d. Click OK.

5. Right-click the task you have inserted, and select Insert > Program
instance.

6. Enter a name in the Program instance field.
The program instance must not be named “RTU” or
“GlobalVariable”.

14

Chapter 3 - HART Configuration



15

7. Select the program you want to associate from the Program type
drop-down list. Click OK.

8. Right-click Libraries and select Insert > Firmware Library, select
hart.fwl under the HART folder. Then click Include.

9. Under Logical POUs, double-click the code worksheet of the
program that you have inserted.

10. From the Edit Wizard, select HART from the Group list. There are
three function blocks available for HART programming: HART_
CMD3 and HART_CMD48 as well as HART_CMDx.

11. Drag the target function block into the workplace to display the
function block.
For more information about the function block, right-click it and
select Help on FB/FU to display the embedded help.

12. Double-click the pin-outs of the function block to assign
variables. The Variable Properties dialog appears.

13. Select the Name, Data Type and Usage from the list.

l For the parameter GEN_DEV_STATUS, you should select HAR_
GEN_DEV_STATUS from the Data Type list.

l For the parameter DEV_INFO, you should select HART_CMD48_
DEV_INFO from the Data Type list.

14. Assign Initial value and I/O address details.

l For the parameter IOM, enter the target module number in the
Initial Value field. For example, if the target module name is
"Expansion I/O 01", enter "01".

l For the parameter CHN, enter the target channel number in the
Initial Value field.

Chapter 3 - HART Configuration



15. Click OK. The workplace will appear as shown below.

16. Click Make from the toolbar to compile the programs.
17. Click Download from the toolbar to download the compiled

programs of HART to the controller.

16

Chapter 3 - HART Configuration



CHAPTER

4 DNP3 OUTSTATION CONFIGURATION

Configuring a DNP3 Outstation
ATTENTION: DNP3 supports a maximum of 500 events per
second.

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select DNP3 Outstation to bind DNP3
Outstation to the Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Under I/O and Communications tab, click Configure Protocols > DNP3
Outstation.

6. Click Add a Master. The Add DNP3 Master dialog appears.

7. Select Ethernet port and Master Index.

TIP: Up to 5 DNP3 masters are supported for one Ethernet
port.

8. Select Enable Channel Redundancy if required.

NOTE: This option is ONLY available for Ethernet port 1
ETH1.

9. Click OK to add a master.
If you select Enable Channel Redundancy, both ports ETH1 and
ETH2 appear. They share a single configuration form at ETH1.

10. In the General group, configure the following parameters.

17



Parameter Description

Mapping Select the required mapping table from the drop-
down list. If the Mapping is empty, you must add
a mapping table first. See "Adding a DNP3
Outstation Mapping table" in the ControlEdge
Builder User's Guide for more information.

For redundant channel, the same mapping table
must be selected on multiple ports. For example,
this could be used when a SCADA system
communicates through 2 ports in a redundant
arrangement.

For individual channel:

For R151 and before, one mapping table must be
used for one port.

Starting from R160, one mapping table can be
used for multiple ports.

TCP Port Configure TCP port number.

Master
Address

Configure Master Address.

Controller
Outstation
Address

Configure Controller Outstation Address.

Enable Self
Address

Select Enable Self Address for the controller to
respond with its unique individual address, if a
message is sent with the “Self Address”. If Enable
Self Address is not selected, the controller will
ignore the message sent to the “Self Address”.

Data Link
Confirmation

Never is selected by default. It is not
recommended to select MultiFrag or Always
options.

If you select MultiFrag or Always, ensure that the
Data Link Retries and Data Link Retry Timeout are
set.

Data Link
Retries

It must be configured if Data Link Confirmation is
selected as MultiFrag or Always.

The maximum value is 255.

18

Chapter 4 - DNP3 Outstation Configuration



19

Parameter Description

Data Link
Retry Timout

It must be configured if Data Link Confirmation is
selected as MultiFrag or Always.

The maximum value is 3,600,000ms.

11. In the Application Layer group, if you select Enable Unsolicited
Responses, the controller sends event data to SCADA without any
request from SCADA. Unsolicited Response is an operation mode
in which the outstation spontaneously transmits a response
without a specific request for the data.

Parameter Description

Send NULL Unsolicited
Responses on
Reconnect

The DNP3 driver sends a null
unsolicited message upon reconnect
once it is selected.

Maximum Hold Delay
of
Class1/Class2/Class3

The maximum hold delay is the
maximum amount of time that the
controller will wait after an event occurs
before sending an unsolicited response.
This setting allows the controller to
queue several events before sending an
unsolicited response, improving
bandwidth usage at the expense of
delayed communication.

Minimum value: 0 ms and maximum
value: 3,600,000ms.

Maximum Hold Count
of
Class1/Class2/Class3

The maximum hold count is the
maximum number of events that may
be queued before sending an
unsolicited response. This setting allows
the controller to send multiple events in
a single message, improving bandwidth
usage at the expense of delayed
communication.

Unsolicited Response
Retries

Enter the number of times the DNP3
driver attempts to send the unsolicited
application fragment upon not receiving
confirmation.

Chapter 4 - DNP3 Outstation Configuration



Parameter Description

The value can be 0 to 255.

Unsolicited Response
Retry Delay

Enter the time intervals between retry to
send the unsolicited response.

Delete Oldest Event on
Event Overflow

According to requirement, select Delete
Oldest Event when queue is full or not.
If this option is checked, in case the
DNP3 event buffer is full, then any new
event overwrites the oldest event.

Validate Controller
Outstation Address

If this option is checked, the controller
only accepts data from some specific
outstation addresses.

Keepalive Interval Enter the interval that DNP3 outstation
sends response to master station to
make sure if the connection is normal.

Enable DNP3 Time
Synchronization

Enable time synchronization from the
DNP3 master.

NOTE: Only one master can be
enabled time synchronization.

DNP3 Time
Synchronization Period

Select the time that the controller
should indicate to SCADA that the time
synchronization is required.

ATTENTION: If you select DNP3
Time Sync here, you cannot
enable Primary Server and
Secondary Server under
Miscellaneous > Configure
Date/Time options at the same
time, or else you cannot
download your configuration.

Solicited Response
Confirmation Timeout

Enter the time in milliseconds the DNP3
driver waits for confirmation for the sent
solicited application fragment.

Unsolicited Response
Confirmation Timeout

Enter the time in milliseconds the DNP3
driver waits for confirmation for the sent

20

Chapter 4 - DNP3 Outstation Configuration



21

Parameter Description

unsolicited application fragment.

Maximum value for timeout is
3600000ms.

Select Before Operation
(SBO) Timeout

Enter the time in milliseconds the DNP3
driver waits for SBO.

EFM Data Class Select the corresponding class for EFM
data to SCADA communication.

Set the time interval for getting the EFM
responses back to Experion from the
controller through the DNP3 virtual
terminal point.

There are three options defined by the
DNP3 master:

l Class 1

l Class 2

l Class 3

12. In the Default Variation group, configure the default variation for
each type of DNP3 point. Default variation defines the data
format that is used by the controller to send data to the DNP3
Master, when the Master does not ask for a specific data
variation.

Parameter Description

Binary
Input

Used to report the current value of a binary input
point with three options:

l Any variation

l Packed format

l Value with flags

Binary
Input Event

Used to report events related to a binary input point
with four options:

l Any variation

Chapter 4 - DNP3 Outstation Configuration



Parameter Description

l Value without time

l Value with absolute time

l Value with relative time

Double-bit
Binary
Input

Used to report the current value of a double-bit
binary input point with three options:

l Any variation

l Packed format

l Value with flags

Double-bit
Binary
Input Event

Used to report events related to a double-bit binary
input point with four options:

l Any variation

l Value without time

l Value with absolute time

l Value with relative time

Binary
Output

Used to control or report the state of one or more
binary output points with three options:

l Any variation

l Packed format

l Status with flags

Binary
Output
Event

A Binary Output Event Object is an instance of a
report for an outstation’s corresponding Binary
Output Static object.

l Any variation

l Status without time

l Status with time

Binary
Output
Command
Event

A Binary Output Command Event object reports
that a command has been attempted on an
outstation’s corresponding binary output point.

l Any variation

22

Chapter 4 - DNP3 Outstation Configuration



23

Parameter Description

l Status without time

l Status with time

Counter Used to report the current value of a counter point
with five options:

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l 32-bit integer without flag

l 16-bit integer without flag

Frozen
Counter

Used to report the value of a counter point captured
at the instant when the count is frozen with seven
options:

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l 32-bit integer with flag. time

l 16-bit integer with flag. time

l 32-bit integer without flag

l 16-bit integer without flag

Counter
Event

Used to report the value of a counter point after the
count has changed with five options:

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l 32-bit integer with flag. time

l 16-bit integer with flag. time

Frozen
Counter
Event

Used to report, as an event, the value of a counter
point captured at the instant when the count is
frozen.

Chapter 4 - DNP3 Outstation Configuration



Parameter Description

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l 32-bit integer with flag. time

l 16-bit integer with flag. time

Analog
Input

Used to report the current value of an analog input
point with seven options:

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l 32-bit integer without flag. time

l 16-bit integer without flag. time

l Single-precision float with flag

l Double-precision float with flag

Analog
Input Event

Used to report events related to an analog input
point with nine options:

l Any variation

l 32-bit integer with time

l 16-bit integer with time

l 32-bit integer without time

l 16-bit integer without time

l Single-precision float with time

l Double-precision float with time

l Single-precision float without time

l Double-precision float without time

Analog
Input
Deadband

Used to set and report the deadband value of an
analog input point with four options:

l Any variation

24

Chapter 4 - DNP3 Outstation Configuration



25

Parameter Description

l 16-bit integer

l 32-bit integer

l Single-precision float

Analog
Output
Status

Used to report the status of an analog output point
with seven options:

l Any variation

l 32-bit integer with flag

l 16-bit integer with flag

l Single-precision float with flag

l Double-precision float with flag

Analog
Output
Event

An Analog Output Event Object is an instance of a
report for an outstation’s corresponding Analog
Output Status object. There are nine options:

l Any variation

l 32-bit integer with time

l 16-bit integer with time

l 32-bit integer without time

l 16-bit integer without time

l Single-precision float with time

l Double-precision float with time

l Single-precision float without time

l Double-precision float without time

Analog
Output
Command
Event

An Analog Output Command Event object reports
that a command has been attempted on an
outstation’s corresponding Analog Output point.
There are nine options:

l Any variation

l 32-bit integer with time

l 16-bit integer with time

Chapter 4 - DNP3 Outstation Configuration



Parameter Description

l 32-bit integer without time

l 16-bit integer without time

l Single-precision float with time

l Double-precision float with time

l Single-precision float without time

l Double-precision float without time

13. In the Secure Authentication v5 tab, configure secure
authentication, user role configure settings, critical function code,
and MAC algorithm for DNP3 secure communication.

i. Select Enable Secure Authentication.

ii. In the User Role Configure settings tab, click Add. Add/Update
User Role dialog box appears. See the following image.

26

Chapter 4 - DNP3 Outstation Configuration



27

See the following table for the parameter descriptions:

Parameter Description

User Name Enter a user name to quickly identify the user
role.

NOTE: User Name must be unique.

User
Number
and User
Role

Select the user number and user role from the
drop-down list.

User Number User Role

1 Operator

2 Engineer

3 Installer

4 Security Admin

5 Security Audit

6 RBACMNT

7 Single User

8 Viewer

UpdateKey Update key is a pre-shared key. Using the
update key, the master can create a session and
change the session key periodically..

NOTE: Update key must match with
master and RTU to enable the session and
perform changes from the master.

If the key is not shared, click Generate Key to
generate the new key and share the new key to
the master.

UpdateKey
Length

It is length of the update key. Select the
Updatekey length as 16 or 32.

NOTE: At master and RTU, the Update Key

Chapter 4 - DNP3 Outstation Configuration



Parameter Description

must have same length.

a. Once all the parameters are configured, click OK. User roles
are added. See the following image for reference.

b. To update the user role parameters, click Update. Add/Update
User Role dialog box appears. Update the required user role
parameters and click OK.

c. To delete the user role, click Delete. A confirmation dialog
box appears and click OK.

iii. (Optional) Enable or Disable Aggressive mode as per the
requirement.

NOTE: By default, Aggressive mode is disabled.

See the following table for parameter description:

Parameter Description

Aggressive
mode

To reduce bandwidth usage, a responder
attempting a critical operation may optionally
“anticipate” the challenge and send the MAC
Value in the same ASDU being protected. This
practice is known as “aggressive mode”.

It eliminates the challenge and reply messages.
For this reason, aggressive mode is optional in

28

Chapter 4 - DNP3 Outstation Configuration



29

Parameter Description

IEC 62351-5.

iv. Enter Challenge Data Length. Users can enter challenge data
length ranging from 4 to 64.

v. In the Critical Function Code List tab, enable or disable the
function code to define a function as critical or non critical.

l The greyed out and pre-selected functions are executed
with a challenge response mechanism only. The remaining
not selected functions are non-critical, and they can be
enabled as critical functions if it is to be executed with a
challenge response mechanism.

NOTE: The greyed out and pre-selected functions can
not be modified or defined as non-critical functions.

See the following image.

vi. Select the MAC Algorithm from drop down list.
Supported MAC algorithms:

l SHA1_4OCTET

l SHA1_8OCTET

l SHA1_10OCTET

l SHA256_8OCTET

l SHA256_16OCTET

l AESGMAC_12OCTET

vii. Enter Max App Timeout Count, Max Authentication Failure, Max
Authentication Rekeys, Max Error Message Sent. Max Key Change
Count, and Max Reply Timeout Count. See the following image.

Chapter 4 - DNP3 Outstation Configuration



See the following table for parameter description:

Parameter Description

Max App
Timeout Count

Number of app timeouts after which secure
authentication failure event happens.

Max
Authentication
Failure

Number of authentication failures after
which Rekey due to fail is incremented.

Max
Authentication
Rekeys

If exceeded, stop changing session keys due
to authentication failure.

Max Error
Message Sent

If exceeded, stop sending error message
objects.

Max Key
Change Count

Change session keys whenever a configured
number of authentication ASDUs has been
transmitted in either direction since last key
change.

Max Reply
Timeout Count

If exceeded, cancel the current transaction.

viii. In Symmetric UpdateKey change method tab, enable Symmetric
UpdateKey change method.
a. Select Authority Symmetric cert key length as 16 or 32.
b. Click Generate Key. Authority Symmetric Cert Key is

generated.
See the following table for parameter description:

Parameter Description

Session Key Each user owns a set of session key which is
used to authenticate data. Master generates it

30

Chapter 4 - DNP3 Outstation Configuration



31

Parameter Description

and periodically (Minutes to weeks) changes it
on both sides.

Update Key It is a pre-shared key. Using the update key, the
master can create a session and change the
session key periodically.

NOTE: Update key must match with
master and RTU to enable the session and
perform changes from the master.

Authority
Key

It is a pre-shared key, It must be matching to
enable the master to change the update key at
master side and replicate the same key at RTU
side. CHANGED IN MONTHS or YEARS.

14. Select Flash or SD card from the drop-down list besides Save DNP3
Events to:.

o If you want to save DNP3 events to an SD card, you must
allocate the space for DNP3 events first. See "Preparing SD
card" in ControlEdge Builder User's Guide for more information.

o Up to 200,000 DNP3 events can be saved to Flash per
ControlEdge 2020 controller.

o Up to 100,000 DNP3 events can be saved to Flash per
ControlEdge 900 controller.

o Up to 500,000 DNP3 events can be saved to an SD card per
controller.

15. Click Save.

16. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

17. Click Download from the Home Page to load the configuration of
the DNP3 Outstation to the controller.

Chapter 4 - DNP3 Outstation Configuration



32

Chapter 4 - DNP3 Outstation Configuration



CHAPTER

5 DNP3 MASTER CONFIGURATION

DNP3 Master is used for communication between the controller and
third-party DNP3 outstation devices over Ethernet. You need to bind
the protocol to the Ethernet port of your controller and program the
DNP3 Master for the project.

Configuring a DNP3 Master
A new project should be created and a controller should be added to
the project opened in ControlEdge Builder. See "Creating a project"
and "Connecting a controller" in ControlEdge Builder User's Guide for
more details.

To set a controller as a DNP3 Master:

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select DNP3 Master to bind DNP3 Master
to the Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

6. Click Download from the Home Page to load the configuration of
the DNP3 Master to the controller.

Programming a DNP3 Master
Follow the instructions below to program DNP3 Master for the
project in IEC Programming Workspace.

1. Right-click Logical POUs and select Insert > Program. Then enter
the name, and click OK. For the following steps, FBD language is
used as an example.

2. Add a Task as follows:

33



a. Under Physical Hardware, right-click Task and select Insert > Task.

b. In the pop-up window, enter the name. Select the task type as
CYCLIC, and click OK.

c. In the pop-up window of Task settings, configure the
corresponding parameters.

d. Click OK.

3. Right-click the task you have inserted, and select Insert > Program
instance.

4. Enter a name in the Program instance field. The program instance
must not be named “RTU” or “GlobalVariable”.

5. Select the program you want to associate from the Program type
drop-down list.

6. Right-click Libraries and select Insert > Firmware Library, select
DNP3.FWL. Then click Include.

7. Under Logical POUs, double-click the code worksheet of the
program that you have inserted.

8. Drag the target function or function block of DNP3 from the Edit
Wizard pane into the code worksheet, the function or function
block is displayed. There are two function blocks available for
DNP3 master programming. See Description of DNP3 Master
Function Block for more information. For the following steps, the
function block DNP3_RD is used as an example.

9. Double-click the pin-outs of the function or function block to
assign variables. In the pop-up Variable Properties window, select
the Name, Data Type and Usage from the drop-down list, and
assign Initial value and I/O address. Then click OK.
To assign initial values to CONFIG_INFO:
CONFIG_INFO, a predefined data structure for DNP3
configuration information, is the crucial input for DNP3 master
function blocks and contains key DNP3 communication
parameters such as port number of the controller to be used,
master address and outstation address, etc. This data structure is
read-only and cannot be viewed and edited in ControlEdge
Builder. See Description of CONFIG_INFO for more information.

10. After the basic programming steps as described, the workplace
will appear as shown below.

34

Chapter 5 - DNP3 Master Configuration



35

11. Click Make from the toolbar to compile the programs.
12. Click Download from the toolbar to download the compiled

programs of DNP3 Master to the controller.

Description of DNP3 Master Function Block
There are 2 DNP3 Master function blocks available, Read Multiple
Points and Write Multiple Points. With these function blocks, you can
read and write Binary, Analog and String as per DNP3 protocol.

Chapter 5 - DNP3 Master Configuration



DNP3_RD

Description

It is used to read the following types of DNP3 points from outstation.

n Single-bit Binary Input

n Double-bit Binary Input

n Binary Output

n Analog Input

n Analog Output

n Counter

n Octet String

Input

Parameter Data type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

DNP3_
CONFIG_
INFO

This is a structure provided by Honeywell. DNP3 Master
related information is included. See Description of CONFIG_
INFO for more information.

36

Chapter 5 - DNP3 Master Configuration



37

Parameter Data type Description

POINT_
ADDR

UINT The start point address you want to read from outstation.

POINT_LEN UINT The length of the points you want to read from outstation.
The maximum length is 100 points.

OBJECT_
TYPE

USINT DNP3 data object you want to read from outstation.

This parameter can be set to the following values:

kDnp3BinaryInput = 0;

kDnp3BinaryOutputStatus = 1;

kDnp3AnalogInput16 = 2;

kDnp3AnalogInput16_NoFlag = 3;

kDnp3AnalogOutput16Status = 4;

kDnp3AnalogInput32 = 5;

kDnp3AnalogInput32_NoFlag = 6;

kDnp3AnalogOutput32Status = 7;

kDnp3AnalogInputFloat = 8;

kDnp3AnalogOutputFloatStatus = 9;

kDnp3OctetStringRD = 10;

kDnp3DoubleBitBinaryInput = 11;

kDnp3Counter16 = 12;

kDnp3Counter16_NoFlag = 13;

kDnp3Counter32 = 14;

kDnp3Counter32_NoFlag = 15;

kDnp3FrozenCounter16 = 16;

kDnp3FrozenCounter16_NoFlag = 17;

kDnp3FrozenCounter32 = 18;

kDnp3FrozenCounter32_NoFlag = 19;

Chapter 5 - DNP3 Master Configuration



Parameter Data type Description

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means last
communication is finished. Before last communication is
finished, even if SEND_ FLAG is true the request won’t be
sent.

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by DNP3 Master protocol. See DNP3
Master Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Input and Output

Parameter Data
type Description

VALUE DNP3_
DATA

Buffer for the data to be read (for read-output parameter)

38

Chapter 5 - DNP3 Master Configuration



39

Parameter Data
type Description

Buffer size = POINT_LEN*size of (data type) , maximum 512
bytes for this buffer.

See the follow size of each data type:

Dnp3BinaryInput (0) 1 byte

Dnp3BinaryOutputStatus (1) 1 byte

Dnp3AnalogInput16 (2) 2 bytes

Dnp3AnalogInput16_NoFlag (3) 2 bytes

Dnp3AnalogOutput16Status (4) 2 bytes

Dnp3AnalogInput32 (5) 4 bytes

Dnp3AnalogInput32_NoFlag (6) 4 bytes

Dnp3AnalogOutput32Status (7) 4 bytes

Dnp3AnalogInputFloat (8) 4 bytes

Dnp3AnalogOutputFloatStatus (9) 4 bytes

Dnp3OctetString (10) 1 byte

Dnp3DoubleBitBinaryInput (11) 1 byte

Dnp3Counter16 (12) 2 bytes

Dnp3Counter16_NoFlag (13) 2 bytes

Dnp3Counter32 (14) 4 bytes

Dnp3Counter32_NoFlag (15) 4 bytes

Dnp3FrozenCounter16 (16) 2 bytes

Dnp3FrozenCounter16_NoFlag (17) 2 bytes

Dnp3FrozenCounter32 (18) 4 bytes

Dnp3FrozenCounter32_NoFlag (19) 4 bytes

Chapter 5 - DNP3 Master Configuration



Example

40

Chapter 5 - DNP3 Master Configuration



41

DNP3_WR

Description

It is used to write the following types of DNP3 points from outstation.

n Single-bit Binary Input

n Double-bit Binary Input

n Binary Output

n Analog Input

n Analog Output

n Counter

n Octet String

Input

Parameter Data type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

DNP3_
CONFIG_
INFO

This is a structure provided by Honeywell. DNP3 Master
related information is included. See Description of CONFIG_
INFO for more information.

Chapter 5 - DNP3 Master Configuration



Parameter Data type Description

POINT_
ADDR

UINT The start point address you want to write to outstation.

POINT_LEN UINT The length of the points you want to write to outstation. The
maximum length is 100 points.

NOTE: The maximum number of objects allowed in a
single control request on external outstation side
must be considered. If the number on the outstation
side is less than 100, the "POINT_LEN" cannot exceed
the number of the outstation.

OBJECT_
TYPE

USINT DNP3 data object you want to write to outstation.

This parameter can be set to the following values:

kDnp3OctetStringWR = 20;

kDnp3CROB_SelOp = 21;

kDnp3CROB_DirOp = 22;

kDnp3CROB_DONA = 23;

kDnp3AnalogOutput16_SelOp = 24;

kDnp3AnalogOutput16_DirOp = 25;

kDnp3AnalogOutput16_DONA = 26;

kDnp3AnalogOutput32_SelOp = 27;

kDnp3AnalogOutput32_DirOp = 28;

kDnp3AnalogOutput32_DONA = 29;

kDnp3AnalogOutputFloat_SelOp = 30;

kDnp3AnalogOutputFloat_DirOp = 31;

kDnp3AnalogOutputFloat_DONA = 32;

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means last
communication is finished. Before last communication is
finished, even if SEND_ FLAG is true the request won’t be
sent.

42

Chapter 5 - DNP3 Master Configuration



43

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by DNP3 Master protocol. See DNP3
Master Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Input and Output

Parameter Data
type Description

VALUE DNP3_
DATA

Buffer for the data to be read (for read-output parameter)

Buffer size = POINT_LEN*size of (data type) , maximum 512
bytes for this buffer.

See the follow size of each data type:

Dnp3OctetStringWR (20) 1 byte

Dnp3CROB_SelOp (21) 1 byte

Chapter 5 - DNP3 Master Configuration



Parameter Data
type Description

Dnp3CROB_DirOp (22) 1 byte

Dnp3CROB_DONA (23) 1 byte

Dnp3AnalogOutput16_SelOp (24) 2 bytes

Dnp3AnalogOutput16_DirOp (25) 2 bytes

Dnp3AnalogOutput16_DONA (26) 2 bytes

Dnp3AnalogOutput32_SelOp (27) 4 bytes

Dnp3AnalogOutput32_DirOp (28) 4 bytes

Dnp3AnalogOutput32_DONA (29) 4 bytes

Dnp3AnalogOutputFloat_SelOp (30) 4 bytes

Dnp3AnalogOutputFloat_DirOp (31) 4 bytes

Dnp3AnalogOutputFloat_DONA (32) 4 bytes

44

Chapter 5 - DNP3 Master Configuration



45

Example

Description of CONFIG_INFO
The CONFIG_INFO pin defined in the function blocks is to input all
the configuration information for the DNP3 Master.

n For Ethernet communication of ControlEdge 2020 controllers, the
data structure is defined as:

TYPE
DNP3_CONFIG_INFO:
STRUCT

PORT_NUM: UDINT;
TCP_PORT_NUM: UDINT;

Chapter 5 - DNP3 Master Configuration



MASTER_ADDR: UDINT;
OUTSTATION_ADDR:UDINT;
IP_ADDR: STRING;

END_STRUCT;

(* Array data type for data read/write *)
DNP3_DATA: ARRAY[1..512] of BYTE;

END_TYPE

See the following table for the parameter descriptions:

Parameter Data
type Description

PORT_NUM UDINT The physical interface of Ethernet port:

1. Ethernet port 1

2. Ethernet port 2

TCP_PORT_
NUM

UDINT TCP/IP port number of the DNP3 Master device

MASTER_ADDR UDINT The address of the DNP3 master

OUTSTATION_
ADDR

UDINT The address of the DNP3 outstation

IP_ADDR STRING The IP address of the DNP3 outstation device. Example:
‘192.168.0.100’

Description of Input and Output Data Type
See the following datatype of parameter Value for details:

DNP3_DATA

TYPE (* Array data type for data read/write *)

DNP3_DATA: ARRAY[1..512] of BYTE;

END_TYPE

DNP3 Master Protocol Error Codes
Refer to the following table for DNP3 Master Protocol Error Codes:

46

Chapter 5 - DNP3 Master Configuration



47

Error
Code Item Description

0 SUCCESS This indicates the request has completed successfully.

1 INTERMEDIATE This indicates a response was received but the requested
command is not yet complete. This could mean the
response is part of a multi-fragment response and did not
have the FINAL bit set. Or this could be a request such as a
select operate that requires multiple requests and
responses.

2 FAILURE This indicates that the transmission of the request failed.

3 MISMATCH The response to a select or an execute did not echo the
request.

4 STATUSCODE The response to a select or an execute echoed the request,
except the status code was different indicating a failure.

5 IIN The response to the request had IIN bits set indicating the
command failed.

6 TIMEOUT This indicates that the request has timed out. This could
either be an incremental timeout indicating we received no
link layer frame from the device in the specified time, or an
application response timeout indicating this particular
request did not complete in the specified time.

7 CANCELED This indicates either that the user asked that the request be
canceled by calling dnpchnl_cancel Fragment or that a
second duplicate request has been made and therefore this
first one is canceled.

Chapter 5 - DNP3 Master Configuration



48

Chapter 5 - DNP3 Master Configuration



CHAPTER

6 ENRON MODBUS SLAVE CONFIGURATION

Configuring an Enron Modbus Slave
To set a controller as an Enron Modbus Slave:

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select Enron Modbus Slave to bind it to the
Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Click Configure Protocols > Enron Modbus Slave, select the target
Ethernet port you want to bind.

6. Select Slave ID. For Ethernet ports, the Port number must be
configured.
The port configured for Enron Modbus Slave cannot be the same
port as that configured for Modbus Slave.

7. Click Save.
8. Click Connect from the Home Page to connect a controller. For the

user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

9. Click Download from the Home Page to load the configuration of
the Modbus Slave to the controller.

49



50

Chapter 6 - Enron Modbus Slave Configuration



CHAPTER

7 MODBUS SLAVE CONFIGURATION

Configuring a Modbus Slave
This section introduces how to set a controller as a Modbus TCP
Slave or Modbus Serial Slave.

1. From the Home Page, click Configure Ethernet Ports to select an
Ethernet port, or click Configure Serial Ports to select a serial port.

2. Configure corresponding parameters for the Ethernet or serial
port.

3. Under Protocol Binding:

l Select Modbus Slave for an Ethernet port.

l Select Modbus RTU Slave or Modbus ASCII Slave for a serial port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Click Configure Protocols > Modbus Slave, select the target Ethernet
or serial port you want to bind.

6. Select Slave ID.

l For Ethernet ports, the range is from 0 to 255

l For Serial ports, the range is from 1 to 247

7. For Ethernet ports, configure the TCP Port/UDP Port number.

8. Select the required mapping table from the Mapping drop-down
list.
If the list is empty, you should add a mapping table first. See
"Adding a Modbus Slave mapping table" in the ControlEdge
Builder User's Guide.
The same mapping table may be selected for use on multiple
ports. For example, this could be used when a SCADA system
communicates through 2 ports in for redundancy.

9. For Ethernet port, select TCP or UDP from drop-down list of Type.

10. For Ethernet ports, when the type is configured as TCP, set
Inactivity Timeout(s) ranging from 20 to 86400.

51



NOTE: The default value is 20. The configuration value
must be greater than the scan rate of Modbus master.

11. Click Save.

12. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

13. Click Download from the Home Page to load the configuration of
the Modbus Slave to the controller.

52

Chapter 7 - Modbus Slave Configuration



CHAPTER

8 MODBUS MASTER CONFIGURATION

Modbus TCP Master
Modbus TCP Master is used for communication between the
controller and third-party Modbus slave devices over Ethernet. You
need to bind the protocol to the Ethernet port of your controller and
program the Modbus TCP Master for the project.

Configuring a Modbus TCP Master
A new project should be created and a controller should be added to
the project opened in ControlEdge Builder. See "Creating a project"
and "Connecting a controller" in ControlEdge Builder User's Guide for
more details.

To set a controller as a Modbus TCP Master:

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select Modbus TCP Master to bind Modbus
TCP Master to the Ethernet port.

4. Click Save to save the configuration, or click Back to return to the
Home Page.

5. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in the ControlEdge
Builder User's Guide.

6. Click Download from the Home Page to load the configuration of
Modbus TCP Master to the controller.

Programming a Modbus TCP Master
Follow the instructions below to program Modbus TCP Master for the
project in IEC Programming Workspace.

1. Right-click Logical POUs and select Insert > Program. Then enter
the name, and click OK. For the following steps, FBD language is
used as an example.

53



2. Add a Task as follows:

1. Under Physical Hardware, right-click Task and select Insert > Task.
2. In the pop-up window, enter the name. Select the task type as

CYCLIC, and click OK.
3. In the pop-up window of Task settings, configure the

corresponding parameters.
4. Click OK.

3. Right-click the task you have inserted, and select Insert > Program
instance.

4. Enter a name in the Program instance field.
The program instance must not be named “RTU” or
“GlobalVariable”.

5. Select the program you want to associate from the Program type
drop-down list.

6. Right-click Libraries and select Insert > Firmware Library, select
MODBUS.FWL. Then click Include.

7. Right-click Data Types and select Insert > Datatypes. In the pop-up
window, enter the Name and click OK.

8. Double-click the data type you have inserted and define an array
in worksheet shown as below as an example, then click Save
button from the toolbar. Click Make.

9. Under Logical POUs, double-click the code worksheet of the
program that you have inserted.

10. Drag the target function or function block of Modbus from the
Edit Wizard pane into the code worksheet, the function or
function block is displayed. There are twelve function blocks
available for Modbus master programming. See Description of
Modbus Function Block for more information. For the following
steps, the function block MB_RD_MHR is used as an example.

11. Double-click the pin-outs of the function or function block to
assign variables. In the pop-up Variable Properties window, select
the Name, Data Type and Usage from the drop-down list, and

54

Chapter 8 - Modbus Master Configuration



55

assign Initial value and I/O address. Then click OK. To assign
initial values to CONFIG_INFO:

To assign initial values to CONFIG_INFO:

CONFIG_INFO, a predefined data structure for Modbus
configuration information, is the crucial input for Modbus master
function blocks and contains key Modbus communication
parameters such as IP address of slave, slave ID, port number of
the controller to be used, etc. This data structure is read-only and
cannot be viewed and edited in ControlEdge Builder. See
Description of CONFIG_INFO for more information. Slave1 is the
variable name assigned by the user of CONFIG_INFO.

12. Assign the data returned by the function block to variables to
monitor.

DATA1 is the variable name assigned by the user of OUTPUT pin
of MB_RD_MHR and it is an array.

After the basic programming steps as described, the workplace
will appear as shown below.

Chapter 8 - Modbus Master Configuration



13. Click Make from the toolbar to compile the programs.
14. Click Download from the toolbar to download the compiled

programs of Modbus TCP Master to the controller.

Modbus Serial Master
Modbus Serial Master is used for communication between the
controller and third-party Modbus slave devices over a serial port.
You need to bind the protocol to the serial port of your controller and
program the Modbus Serial Master for the project.

Configuring a Modbus Serial Master
A new project is created and a controller is added to the project
opened in RTU Builder. See "Creating a project" and "Connecting a
controller" in ControlEdge Builder User's Guide for more details.

To set the controller as a Modbus Serial Master

1. From the Home Page, click Configure Serial Ports and select the
target serial port to configure.

2. Under General,Port Name and Port Type are displayed
automatically. Select appropriate values for Baud Rate, Parity, Data
Bits, Stop Bits, Flow Control and Force Online if applicable. See the
following tables for parameter descriptions.

Parameter Description

Baud Rate 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
57600, 115200

Table 8-1: Serial Port Parameters

56

Chapter 8 - Modbus Master Configuration



57

Parameter Description

RS232 does not support 57600 and 115200.

Parity None, ODD, EVEN

Data Bits 7, 8

Stop Bits 1, 2

For RS232-1 and RS232-2, there are two more options to
configure: Flow Control and Force Online. See the following table for
the parameter descriptions.

Parameter Description

Flow
Control

Only for RS232-1 and RS232-2

l None

l RTS-CTS

Force
Online

Only for RS232-1 and RS232-2.

Force Online is used to save energy when there is
no device connected to the controller RS232 ports
by disabling it.

Select the desired option from the Force Online
drop-down list:

l Disable

It is selected by default and the controller is on
power saving mode. RS232 transmitter will
detect the connection of external device. If
external device is connected to the controller, the
local transmitter will be enabled for
communication. If there is no external device
connected, the local transmitter will remain
disabled to save energy.

l Enable

RS232 transmitter will not detect external device
and if you force enable, more energy is
consumed.

Table 8-2: RS232 Serial Port Parameters

Chapter 8 - Modbus Master Configuration



The following table describes four scenarios that will happen for
Force Online option between the controller and the device it
communicates.

Controller
Force
Online
Option

Third-party
Device
Force
Online
Option

Communication

Enabled Enabled Normal

Disabled Enabled Normal, with energy saving on the
controller

Enabled Disabled Normal, with energy saving on Device

Disabled Disabled It is forbidden. Both devices would
consider there is no device connected
to it and hence there is no
communication between them.

Table 8-3: Force online scenarios between the controller and
devices

3. Under Protocol Binding, select Modbus RTU Master or Modbus ASCII
Master to bind Modbus Serial Master to the serial port. See the
following table for parameter descriptions.

Protocol Description

Modbus
RTU
Master

The controller acts as the Modbus Master and used
for communication between The controller and third-
party Modbus Slave devices, for example I/O modules.

Modbus
ASCII
Master

The controller acts as the Modbus Master and used
for communication between The controller and third-
party Modbus Slave devices, for example: I/O
modules.

Table 8-4: Parameter descriptions of Modbus RTU Master and
Modbus ASCII Maste

4. Click Save to save the configuration, or click Back to return to the
Home Page.

5. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

58

Chapter 8 - Modbus Master Configuration



59

6. Click Download from the Home Page to load the configuration of
Modbus Serial Master to the controller.

Programming a Modbus Serial Master
Follow the instructions below to program Modbus Serial Master for
the project in IEC Programming Workspace.

1. Right-click Logical POUs and select Insert > Program. Then enter
the name, and click OK. For the following steps, FBD language is
used as an example.

2. Add a Task as follows:

a. Under Physical Hardware, right-click Task and select Insert > Task.
b. In the pop-up window, enter the name. Select the task type as

CYCLIC, and click OK.
c. In the pop-up window of Task settings, configure the

corresponding parameters.
d. Click OK.

3. Right-click the task you have inserted, and select Insert > Program
instance.

4. Enter a name in the Program instance field.

The program instance must not be named “RTU” or
“GlobalVariable”.

5. Select the program you want to associate from the Program type
drop-down list.

6. Right-click Libraries and select Insert > Firmware Library, select
MODBUS.FWL. Then click Include.

7. Right-click Data Types and select Insert > Datatypes. In the pop-up
window, enter the Name and click OK.

8. Double-click the data type you have inserted and define an array
in worksheet shown as below as an example, then click Save from
the toolbar. Click Make.

Chapter 8 - Modbus Master Configuration



9. Under Logical POUs, double-click the code worksheet of the
program that you have inserted. The workspace appears.

10. Drag the target function or function block of modbus from the
Edit Wizard pane into the workspace, the function or function
block is displayed. There are twelve function blocks available for
Modbus master programming. See Description of Modbus
Function Block for more information. For the following steps, the
function block MB_RD_MHR is taken as an example.

11. Double-click the pin-outs of the function or function block to
assign variables. In the pop-up Variable Properties window, select
the Name, Data Type and Usage from the drop-down list, and
assign Initial value and I/O address. Then click OK.

To assign initial values to CONFIG_INFO:

CONFIG_INFO, a predefined data structure for Modbus
configuration information, is the crucial input for Modbus master
function blocks and contains key Modbus communication
parameters such as IP address of slave, slave ID, port number of
the controller to be used, etc. This data structure is read-only and
cannot be viewed and edited in RTU Builder. See Description of
CONFIG_INFO for more information. Slave1 is the variable name
assigned by the user of CONFIG_INFO.

12. Assign the data returned by the function block to variables to
monitor.

60

Chapter 8 - Modbus Master Configuration



61

DATA1 is the variable name assigned by the user of OUTPUT pin
of MB_RD_MHR and it is an array.

After the basic programming steps as described, the workplace
will appear as shown below.

13. Click Make from the toolbar to compile the programs.
14. Click Download from the toolbar to download the compiled

programs of Modbus Serial Master to the controller.

Description of Modbus Function Block
With these function blocks, you can read and write single coil,
multiple coils, single discrete input, multiple discrete inputs, single
input register, multiple input registers, single holding register, etc., as
per Modbus protocol.

Chapter 8 - Modbus Master Configuration



Read Single Coil

Description

It is used to read a single coil.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is
not included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

62

Chapter 8 - Modbus Master Configuration



63

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT BOOL Output: 1: true, 0: OFF

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Chapter 8 - Modbus Master Configuration



Read Multiple Coils

Description

It is used to read multiple coils.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is
not included in the address.

LENGTH UINT The number of registers to read, ranging from 1 to 2000.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means the last
communication finished. Before the last communication is
finished, even if SEND_FLAG is true, the request won’t be sent.

64

Chapter 8 - Modbus Master Configuration



65

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT Array
of
BOOL

User defined data type: array of bool. The size of the array
should be equal to the number of the registers to read. Define a
data type as shown below:

TYPE
Variable Name: array[1..LENGTH] of

BOOL;
END_TYPE

DONE BOOL Indicates that the response is received from a responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Chapter 8 - Modbus Master Configuration



Read Single Discrete Input

Description

It is used to read single discrete input.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is
not included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means last
communication is finished. Before last communication is
finished, even if SEND_FLAG is true the request won’t be sent.

66

Chapter 8 - Modbus Master Configuration



67

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT Array of
BOOL

User defined data type: array of BOOL. The size of the array
should be equal to the number of the registers to read.

OUTPUT BOOL Output: 1: true, 0: OFF

DONE BOOL Indicates that the response is received from a responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Chapter 8 - Modbus Master Configuration



Read Multiple Discrete Inputs

Description

It is used to read multiple discrete inputs.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is
not included in the address.

LENGTH UINT The number of registers to read, ranging from 1 to 2000.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
will send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if SEND_FLAG is true, the request won’t be sent.

68

Chapter 8 - Modbus Master Configuration



69

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT Array
of
BOOL

User defined data type: array of bool. The size of the array
should be equal to the number of the registers to read. Define a
data type as shown here:

TYPE
Variable Name: array[1..LENGTH] of

BOOL;
END_TYPE

DONE BOOL Indicates that the response is received from a responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Chapter 8 - Modbus Master Configuration



Read Single Input Register

Description

It is used to read single input register.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The Modbus register address to read. Function code is not
included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before last communication is
finished, even if SEND_FLAG is true, the request won’t be sent.

70

Chapter 8 - Modbus Master Configuration



71

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT UINT 16bit Data read from the START_ADDR

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out(IPC timeout).

4: Invalid request

Chapter 8 - Modbus Master Configuration



Read Multiple Input Registers

Description

It is used to read multiple input registers.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is
not included in the address.

LENGTH UINT The number of registers to read, ranging from 1 to 125.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

72

Chapter 8 - Modbus Master Configuration



73

Output

Paramete
r

Data
type Description

RDY_
FLAG

BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT INT,
UINT,
DINT,
UDIN
T,
LINT,
REAL
or
LREA
L;

User defined data type. The size of the array should be equal to the
number of the registers to read multiplied by the register size.

The end user should define a data type as shown here:

TYPE
array[1..LENGTH] of

INT/UINT/DINT/UDINT/LINT/REAL/LREAL;
END_TYPE

The end user can read the data of a specific register by using the
suffix.

TIP: This block supports reading data from a Modbus
responder configured with non-standard register sizes (For
example: 32-bit or 64-bit registers).

ENDIAN_
MODE

USIN
T

Endian mode is required for reading/writing 32bit and 64 bit
variables. As Modbus always use big Endian to transceive data,
there is no need to set the Endian mode for 16-bit data.

1: little Endian mode for 32 bit data

2: byte-swapped little Endian mode for 32 bit data

3: big Endian mode for 32 bit data

4: byte-swapped big Endian mode for 32 bit data

5: little Endian mode for 64 bit data

6: byte-swapped little Endian mode for 64 bit data

7: big Endian mode for 64 bit data

8: byte-swapped big Endian mode for 64 bit data

See Endian Mode for more information.

Chapter 8 - Modbus Master Configuration



Paramete
r

Data
type Description

DONE BOOL Indicates that the response is received from responder device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a protocol
error.

PROTOC
OL_ERR

USIN
T

Error numbers defined by Modbus protocol. See Modbus Protocol
Error Codes for more information.

GEN_ERR USIN
T

General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Read Single Holding Register

Description

It is used to read a single holding register.

74

Chapter 8 - Modbus Master Configuration



75

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The Modbus register address to read. Function code is not
included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true the request won’t be
sent.

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT UINT 16 bit data read from the START_ADDR

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set true if there is either a general error or a protocol
error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

Chapter 8 - Modbus Master Configuration



Parameter Data
type Description

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Read Multiple Holding Registers

Description

It is used to read multiple holding registers.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_ UINT The first Modbus register address to read. Function code is

76

Chapter 8 - Modbus Master Configuration



77

Parameter Data
type Description

ADDR not included in the address.

LENGTH UINT The number of registers to read, ranging from 1 to 125.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

Output

Paramet
er

Data
type Description

RDY_
FLAG

BOO
L

True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

OUTPUT Array
of
INT,
UIN
T,
DIN
T,
UDI
NT,
LINT,
REAL
or
LRE
AL;

User defined data type. The size of the array should be equal to the
number of the registers to read multiplied by the register size.

The end user should define a data type as shown here:

TYPE
Variable Name: array[1..LENGTH] of

INT/UINT/DINT/UDINT/LINT/REAL/LREAL;
END_TYPE

The end user can read the data of a specific register by using the
suffix.

TIP: This block supports reading data from a Modbus
responder configured with non-standard register sizes (For
example: 32-bit or 64-bit registers).

ENDIAN_
MODE

USIN
T

Endian mode is required for reading/writing 32bit and 64 bit
variables. As Modbus always use big Endian to transceive data, there
is no need to set the Endian mode for 16-bit data.

1: little Endian mode for 32 bit data

2: byte-swapped little Endian mode for 32 bit data

Chapter 8 - Modbus Master Configuration



Paramet
er

Data
type Description

3: big Endian mode for 32 bit data

4: byte-swapped big Endian mode for 32 bit data

5: little Endian mode for 64 bit data

6: byte-swapped little Endian mode for 64 bit data

7: big Endian mode for 64 bit data

8: byte-swapped big Endian mode for 64 bit data

See Endian Mode for more information.

DONE BOO
L

Indicates that the response is received from responder device.

ERR_
FLG

BOO
L

Will be set to TRUE if there is either a general error or a protocol
error.

PROTOC
OL_ERR

USIN
T

Error numbers defined by Modbus protocol. See Modbus Protocol
Error Codes for more information.

GEN_
ERR

USIN
T

General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

78

Chapter 8 - Modbus Master Configuration



79

Write Single Coil

Description

It is used to write a single coil.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The Modbus register address to read. Function code is not
included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

INPUT BOOL 1: ON

0: OFF

Chapter 8 - Modbus Master Configuration



Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Write Single Holding Register

Description

It is used to write single holding register.

80

Chapter 8 - Modbus Master Configuration



81

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The Modbus register address to read. Function code is not
included in the address.

SEND_
FLAG

BOOL If SEND_FLAG is true and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

INPUT UINT 16 bit input data of START_ADDR register

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

Chapter 8 - Modbus Master Configuration



Parameter Data
type Description

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Write Multiple Coils

Description

It is used to write multiple coils.

Input

Parameter Data
type Description

ENABLE BOOL Enable: If TRUE, the FB is enabled and workable.

CONFIG_
INFO

User
defined
data
type

This is a structure provided by Honeywell. Modbus related
information is included. See Description of CONFIG_INFO for
more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is not
included in the address.

82

Chapter 8 - Modbus Master Configuration



83

Parameter Data
type Description

LENGTH UINT The number of registers to write, ranging from 1 to 1968.

SEND_
FLAG

BOOL If SEND_FLAG is TRUE and RDY_FLAG is true, function blocks
would send the request. RDY_FLAG is TRUE means the last
communication is finished. Before the last communication is
finished, even if the SEND_FLAG is true, the request won’t be
sent.

INPUT Array of
BOOL

User defined data type: array of bool. The size of the array
should be equal to the number of the registers to read. The end
user should define a data type as shown here:

TYPE
Variable Name: array[1..LENGTH] of

BOOL;
END_TYPE

Use the suffix to set the status of a specific register.

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. FB is ready for the next
communication.

False: command request is being sent or received.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

Chapter 8 - Modbus Master Configuration



Parameter Data
type Description

3: Controller internal time out (IPC timeout).

4: Invalid request

Write Multiple Holding Registers

Description

It is used to write multiple holding registers.

Input

Param
eter

Data
type Description

ENABL
E

BOO
L

Enable: If TRUE, the function block is enabled and workable.

CONFI
G_INFO

User
defin
ed
data
type

This is a structure provided by Honeywell. Modbus related information
is included. See Description of CONFIG_INFO for more information.

START_
ADDR

UINT The first Modbus register address to read. Function code is not
included in the address.

84

Chapter 8 - Modbus Master Configuration



85

Param
eter

Data
type Description

LENGT
H

UINT The number of registers to write, ranging from 1 to 123.

SEND_
FLAG

BOO
L

If SEND_FLAG is true and RDY_FLAG is true, function blocks would
send the request. RDY_FLAG is TRUE means the last communication
is finished. Before the last communication is finished, even if the
SEND_FLAG is true, the request won’t be sent.

INPUT Array
of
INT,
UINT,
DINT,
UDIN
T,
LINT,
REA
L, or
LREA
L

User defined data type. The size of the array depends on the number
of the registers to write:

Size of (array) * size of (element of array) / size of (UINT) = LENGTH.

The end user should define a data type as shown here:

TYPE
Variable Name: array[1..LENGTH] of

INT/UINT/DINT/UDINT/LINT/REAL/LREAL;
END_TYPE

Use the suffix to read the data of a specific register.

Output

Parameter Data
type Description

RDY_FLAG BOOL True: last communication is finished. The function block is
ready for the next communication.

False: command request is being sent or received.

ENDIAN_
MODE

USINT Endian mode is required for reading/writing 32bit and 64 bit
variables. As Modbus always use big Endian to transceive
data, there is no need to set the Endian mode for 16-bit data.

1: little Endian mode for 32 bit data

2: byte-swapped little Endian mode for 32 bit data

3: big Endian mode for 32 bit data

4: byte-swapped big Endian mode for 32 bit data

Chapter 8 - Modbus Master Configuration



Parameter Data
type Description

5: little Endian mode for 64 bit data

6: byte-swapped little Endian mode for 64 bit data

7: big Endian mode for 64 bit data

8: byte-swapped big Endian mode for 64 bit data

See Endian Mode for more information.

DONE BOOL Indicates that the response is received from responder
device.

ERR_FLG BOOL Will be set to TRUE if there is either a general error or a
protocol error.

PROTOCOL_
ERR

USINT Error numbers defined by Modbus protocol. See Modbus
Protocol Error Codes for more information.

GEN_ERR USINT General error code:

0: Communication succeeded.

1: The input parameter is invalid.

2: Response timeout

3: Controller internal time out (IPC timeout).

4: Invalid request

Description of CONFIG_INFO
The CONFIG_INFO pin defined in the function blocks is to input all
the configuration information for the Modbus master.

There are three types of communication between Modbus master
and Modbus responder: serial communication of ControlEdge 2020
controllers using RS232 or RS485, Ethernet communication and
serial communication of ControlEdge 900 Controllers. Accordingly
three types of data structures are defined for CONFIG_INFO.

n For serial communication of ControlEdge 2020 controllers, the
data structure is defined as:

TYPE
MB_CONFIG_INFO_COM:
STRUCT

86

Chapter 8 - Modbus Master Configuration



87

MB_1RESPONDER_ID: USINT;
PORT_NUM: USINT;
RETRIES: USINT;
TIMEOUT: UDINT;

END_STRUCT;
END_TYPE

n For Ethernet communication, the data structure is defined as:

TYPE
MB_CONFIG_INFO_ETH:
STRUCT

MB_RESPONDER_ID:
USINT;

PORT_NUM:
USINT;

RETRIES:
USINT;

TIMEOUT:
UDINT;

TCP_PORT_NUM: UINT;
IP_ADDR:

STRING;
END_STRUCT;

END_TYPE

n For serial communication of ControlEdge 900 Controllers, the
data structure is defined as:

TYPE
MB_CONFIG_INFO_ECOM:
STRUCT

MB_RESPONDER_ID: USINT;
PORT_NUM: USINT;
RETRIES: USINT;
TIMEOUT: UDINT;
RACK_NUM: UDINT;
SLOT_NUM: UDINT;

END_STRUCT;
END_TYPE

See the following table for the parameter descriptions:

1Adaption of new inclusive terminologies.

Chapter 8 - Modbus Master Configuration



Parameter Data
type Description

MB_
1RESPONDER_
ID

USINT Modbus responder ID: valid arrange: 1~247.

PORT_NUM USINT The physical interface of serial port:

1. RS232 port 1

2. RS232 port 2

3. RS485 port 1

4. RS485 port 2

5. reserved

6. reserved

The physical interface of Ethernet port:

1. Ethernet port 1

2. Ethernet port 2

3. reserved

4. reserved

RETRIES USINT Retry times before it is failed.

TIMEOUT UDINT Timeout unit: millisecond.

The minimal timeout is 500 ms. If the end-user gives a
number less than 500, the FB would send the default
timeout value instead.

TCP_PORT_
NUM

UINT TCP/IP port number of the Modbus responder device

IP_ADDR STRING The IP address of the Modbus responder device. Example:
‘192.168.0.100’

RACK_NUM UDINT The rack number of the serial port:

l 0 for local CPM,

1Adaption of new inclusive terminologies.

88

Chapter 8 - Modbus Master Configuration



89

Parameter Data
type Description

l 1 to 99 for remote EPM

SLOT_NUM UDINT The slot number of the serial port, 1 to 12 are available

Description of Input and Output Data Type
Modbus supports reading and writing multiple consecutive registers.
In these cases, the input or output is defined as an array.

n For reading and writing coils and discrete inputs, array of BOOL is
defined.

Set or retrieve the data value by using the suffix. For example:
there are 10 coils to read, the output array COIL_OUT can be
defined as array [1...10] of BOOL, reading the status of the fifth
register could be COIL_OUT [5].

n For reading and writing input registers and holding registers,
multiple array types can be defined: INT, UINT, DINT, UDINT,
REAL, LREAL or LINT.

Set or retrieve the data value by using the suffix. For example:
there are 3 LREAL variables , or in other words, 12 holding
registers to read, the output array LREAL_OUT can be defined as
array[1..3] of LREAL, reading the value of the second register
could be LREAL_OUT[2]. In this case, the Endian mode is
involved.

Modbus Protocol Error Codes
Refer to the following table for Modbus Protocol Error Codes:

Error
Code Item Description

0 success N/A

65 I/O error The underlaying I/O system reported an error.

69 Connection
broken

Signals that the TCP/IP connection is closed by the remote
peer or broken.

129 checksum
error

N/A

Chapter 8 - Modbus Master Configuration



Error
Code Item Description

130 invalid frame
error

Signals that a received frame does not correspond either by
structure or content to the specification or does not match a
previously sent query frame. A poor data link typically causes
this error.

131 Invalid reply
error

Signals that a received reply does not correspond to the
specification

132 reply timeout
error

Signals that a fieldbus data transfer timed out. This can occur
if the responder device does not reply in time or does not reply
at all. A wrong unit address will also cause this error. On some
occasions, this exception is also produced if the characters
received don't constitute a complete frame.

133 send timeout
error

Signals that a fieldbus data send timed out. This can only
occur if the handshake lines are not properly set.

134 Invalid
responder1 ID

Signals that a fieldbus data is not for me.

161 illegal
function
response

Signals that an illegal Function exception response was
received. This exception response is sent by a responder
device instead of a normal response message if a master sent
a Modbus function not supported by the responder device.

162 illegal address
response

Signals that an illegal Data Address exception response was
received. This exception response is sent by a responder
device instead of a normal response message if a master
queried an invalid or non-existing data address.

163 illegal value
response

Signals that an illegal Value exception response was received.
This exception response is sent by a responder device instead
of a normal response message if a master sent a data value
that is not an allowed value for the responder device.

164 failure
response

Signals that a Responder Device Failure exception response
(code 04) was received. This exception response is sent by a
responder device instead of a normal response message if an
unrecoverable error occurred while processing the requested
action. This response is also sent if the request would
generate a response whose size exceeds the allowable data
size.

1Adaption of new inclusive terminologies.

90

Chapter 8 - Modbus Master Configuration



91

Error
Code Item Description

165 Acknowledge Responder has accepted request and is processing it, but a
long duration of time is required. This response is returned to
prevent a timeout error from occurring in the master. Master
can next issue a Poll Program Complete message to
determine whether processing is completed.

166 Responder
Device Busy

Responder is engaged in processing a long-duration
command. Master should retry later.

167 Negative
Acknowledge

Responder cannot perform the programming functions.
Master should request diagnostic or error information from
responder.

168 Memory Parity
Error

Responder detected a parity error in memory. Master can retry
the request, but service may be required on the responder
device.

170 Gateway Path
Unavailable

Specialized use in conjunction with gateways, indicates that
the gateway was unable to allocate and an internal
communication path from the input port to the output port for
processing the request. Usually means that the gateway is
misconfigured or overloaded.

171 Gateway
Target Device
Failed to
Respond

Specialized use in conjunction with gateways, indicates that
no response was obtained from the target device. Usually
mean that the device is not present on the network.

Endian Mode
Modbus protocol supports 16bit data only. If there are 32bit or 64bit
variables, 2 or 4 consecutive registers should be used to read the
data value. In these cases, the Endian mode may be involved due to
the different Endian modes in Modbus responder devices.

See the following table for the concept of Endian modes used in
Modbus function blocks:

Endian
mode Description

Little
endian

Lower registers contain lower bits and higher registers contain higher bits.
The order is on a register basis. Inside each register, the more significant
byte is always at the first place as defined by the Modbus protocol.

Chapter 8 - Modbus Master Configuration



Endian
mode Description

Big
endian

Lower registers contain higher bits and higher registers contain lower bits.
The order is on a register basis. Inside each register, the more significant
byte is always at the first place as defined by the Modbus protocol.

Byte-
swapped

The two bytes inside each register would be swapped.

See the following table for the valid Endian modes:

Valid Endian mode Description

1 little Endian mode for 32 bit data

2 byte-swapped little Endian mode for 32 bit data

3 big Endian mode for 32 bit data

4 byte-swapped big Endian mode for 32 bit data

5 little Endian mode for 64 bit data

6 byte-swapped little Endian mode for 64 bit data

7 big Endian mode for 64 bit data

8 byte-swapped big Endian mode for 64 bit data

92

Chapter 8 - Modbus Master Configuration



CHAPTER

9 OPC UA CONFIGURATION

Introduction
OPC is the interoperability standard for the secure and reliable
exchange of data in the industrial automation space and in other
industries. It is a platform independent and ensures the seamless
flow of information among devices from multiple vendors.

OPC UA released in 2006 is a platform independent service-oriented
architecture that integrates all the functionality of the individual OPC
Classic specifications into one extensible framework.

ControlEdge 900 controller supports OPC UA server and client which
are built-in protocols in the controller, and it provides an IIoT-ready
open platform that enables users to better leverage data across their
assets. Benefits include:

n Smooth integration with a broad range of instruments, equipment
and software from multiple vendors

n Flexible and scalable design due to interoperable multi-level and
multi-platform open communication

n Direct access to cloud-based applications for visualization and
analytics

Prerequisite skills

This guidance uses terminology and concepts defined in OPC UA,
PLCOpen and IEC 61131-3 specifications. It is assumed that you
have familiarity with these Industry Standards. The following table
lists relevant OPC UA or PLCOpen terminology and concepts
introduced in this guide.

Reference Description

[UA-3] OPC Unified
Architecture
Specification
Part 3:
Address
Space Model,

Defines the basic address model concepts including nodes,
attributes, references, variables, data types and methods.
Standard node classes are defined in this specification.

93



Reference Description

Release 1.03

[UA-4] OPC Unified
Architecture
Specification
Part 4:
Services,
Release 1.03

Abstract descriptions of OPC UA Services which are organized
into Service Sets. Familiarization with the “Overview” content
for the following Service Sets is recommended:
SecureChannel, Session, Monitored Item, and Subscription.

[UA-5] OPC Unified
Architecture
Specification
Part 5:
Information
Model,
Release 1.03

Building on the concepts introduced in Part 3, this
specification defines the UA Information model which is the
base for all OPC UA Information Models including PLCOpen.
It defines entry points into the address space, Server Object,
built-in object or data types, standard objects and their
variables and standard references.

[UA-7] OPC Unified
Architecture
Specification
Part 7:
Profiles,
Release 1.03

Defines meaningful collections of features for compliance
purposes. Familiarity with the terminology introduced in this
specification including profile, facet, and compliance unit is
recommended.

[UA-
12]

OPC Unified
Architecture
Specification
Part 12:
Discovery and
Global
Services

Describes how UA products can be discovered and managed
on a computer, network infrastructure, or enterprise-wide.

[DI] OPC Unified
Architecture
for Devices
Companion
Specification

Defines an OPC UA Information Model associated with
Devices. This information model provides a base for other
OPC UA companion specifications including PLC Open.

[PLC] PLCopen and
OPC
Foundation:
OPC UA
Information
Model for IEC
61131-3,

Defines an OPC UA Information Model to represent the IEC
61131-3 architectural models. This specification is
considered a companion specification to the set of OPC UA
specifications. To understand the overall structure of the IEC
61131-3 Information model as it relates to DI and base OPC
UA, see the figure labeled as “OPC UA IEC 61131-3
ObjectTypes Overview”.

94

Chapter 9 - OPC UA Configuration



95

Reference Description

Release 1.00

[IEC] IEC 61131
Basics

Help content that is accessible from ControlEdge Builder. IEC
61131 compliant PLC elements are described in detail
including those for data types.

OPC UA Security

Security Objectives
OPC UA defines several security objectives. In order to satisfy these
security objectives, OPC UA requires that each instance of an OPC
UA client and OPC UA server possess a unique x509 certificate
known as an “application instance certificate”. OPC UA security
objectives and the role of the application instance certificate in
achieving these objectives are summarized in the table below.

Objective Description

Authentication The process of verifying the identity of an entity such as a client or
server. In OPC UA, client and server, applications must exchange and
validate each other’s certificate before a secure communication
channel can be initiated.

Authorization The right or permission granted to an entity to access a system
resource. In OPC UA, client and server applications maintain “trust
lists”. A client or server trust list identifies the set of applications
which are authorized to access the resources of that client or server.
When a client initiates communication with a server, certificates are
first exchanged, then mutually authenticated then finally, compared
to the set of authorized applications found in the local trust list. If
the server’s trust list authorizes the client certificate and the client’s
trust list authorizes the server certificate, then a secure
communication channel can be established.

Confidentiality Protection from data being read by unintended parties. After a
secure communication channel has been established, client and
server applications can utilize the exchanged certificate information
to digitally encrypt message payloads exchanged between client and
server. This ensures that malicious third parties are unable to read
the content of the exchanged messages

Integrity Assurance that information was not modified in transit. After a

Chapter 9 - OPC UA Configuration



Objective Description

secure communication channel has been established, client and
server applications can utilize the exchanged certificate information
to digitally sign message payloads exchanged between client and
server. This ensures that malicious third parties are unable to
successfully alter the content the exchanged messages.

Application Instance Certificates
Application instance certificates are uniquely assigned to individual
client or server application instances. This means that different
installations of one client or server application (e.g., same application
installed on different host nodes) will have unique application
instance certificates. Application instance certificate “uniqueness” is
assured through the inclusion of special OPC UA extensions
associated with the application instance certificate. Refer to the
figure below. The extension “SubjectAltName” is crucial. The
SubjectAltName extension must contain two pieces of information
that ensure instance uniqueness. The Application URI component is
a unique identifier assigned to the particular application instance
and the DNS name or IP address component uniquely identifies the
node which is hosting this application instance.

96

Chapter 9 - OPC UA Configuration



97

OPC UA Certificate Management
Due to the requirement that OPC UA application instance certificates
hold instance unique information as described above, they can only
be generated and assigned at client or server configuration time and
only after the application has been installed. In most cases, OPC UA
client and server applications are designed to self-generate a
certificate, also known as a “self-signed” certificate. In many cases,
self-signed certificates are sufficient to meet the security
requirements of the deployment use case.

In more sophisticated deployment scenarios, a centralized certificate
management service may exist. Such a service is generally known as
a “certifying authority” or CA. The CA is responsible for generating
and issuing application instance certificates for all of the OPC UA
applications deployed within its scope of responsibility or authority.
The CA is also responsible for managing the list of trusted
applications within its scope which includes revoking certificates
when an application is removed from the system. A comprehensive
treatment of the roles and responsibilities generally associated with a
CA is beyond the scope of this overview.

OPC UA Server Security
The ControlEdge OPC UA Server fully supports OPC UA Security by
providing an application instance certificate for application
authentication and implementing security policies defined by OPC
UA.

Default Certificate

The UA Server on startup generates a self-signed application
instance certificate. The certificate is unique to the ControlEdge PLC
hosting the UA Server. This uniqueness is guaranteed by including
the serial number of the ControlEdge PLC in the application URI. The
application URI of the UA server is defined as follows:

urn:[CPMSerialNumber]:Honeywell:ControlEdgePLC:UAServer

In addition to the URI, the certificate also includes the IP Addresses
assigned to both ETH1 and ETH2 thereby identifying the device
where the UA Server is running. These elements are stored within the
SubjectAltName extension of the application instance certificate. See
Application Instance Certificates for more information.

Chapter 9 - OPC UA Configuration



Security Policies

Security policies define the security mechanisms used to secure the
connection between the client and server. A security policy defines
the algorithms for signing and encryption, the algorithm for key
derivation and the key lengths used in the algorithms. ControlEdge
PLC allows the user to configure the security policies that the UA
Server will support. See Configure ControlEdge 900 controller OPC
UA Server for more information.

User Authentication

The UA Server supports user authentication/authorization by
validating a username and password combination sent by the UA
Client. The server will accept user credentials as provided by
ControlEdge Builder namely Operator, Engineer or Administrator. UA
Clients can select any one of these user names when connecting to
the server.

User Authentication is configurable. The UA Server can also be
configured to allow anonymous connections.

Trusting UA Client Applications

A secure connection between UA Client and the ControlEdge PLC UA
Server is possible only when the UA server can trust and validate the
client’s application instance certificate. This requires that the client’s
application instance certificate be added to the server’s trust list. To
help with this process, the ControlEdge OPC UA Server supports the
OPC UA “push management model” and exposes methods which can
be invoked by authorized client applications in order to update the
server’s trust list when necessary. See [UA-12] for a detailed
description of the push management model. Push model methods
are provided by the server’s ServerConfiguration object. This object
provides a standard OPC UA interface for managing trust lists that
allows external clients such as UAExpert to add client certificates to
the ControlEdge PLC UA Server’s trust list. In order to access the
ServerConfiguration object, client applications must connect using a
secure channel with encryption and supply Administrator credentials.

Shown below is the ServerConfiguration object and methods that it
exposes:

98

Chapter 9 - OPC UA Configuration



99

Provisioning mode

As part of the push model, the ControlEdge UA Server implements a
“provisioning mode” which is a state during which the server will
allow a secure client connection before any client certificates have
been added to the server’s trust list. This is to allow a client
application such as UA Expert to make the initial connection and add
client certificates to the server trust list. Once one or more
certificates have been added to the trust list the provisioning mode is
turned off. It is therefore important to make sure that the certificate

Chapter 9 - OPC UA Configuration



of client application intended to be used for subsequent updates to
the server trust list be added to the trust list while the UA Server is
still in the provisioning mode. For details on using UAExpert to add
certificates to the server trust list, see Add a Certificate to the Server
Trust List for more information.

OPC UA Server Security Configuration

The “Advanced Configuration” tab allows an Administrator to
configure security settings for the UA Server. The OPC UA Server can
support one or more of the security policies listed below.

Security Policy Description

n OpcUa SecurityPolicy None. This policy is used for configurations
with the lowest security needs. It results in a connection that is
not secure.

n OpcUa SecurityPolicy Basic128Rsa15. This policy is used for
configurations with medium security needs. It has been
deprecated with the OPC UA Specification Version 1.04 and
should be enabled only for backward compatibility

n OpcUa SecurityPolicy Basic256. This policy is used for
configurations with medium security needs. It has been
deprecated with the OPC UA Specification Version 1.04 and
should be enabled only for backward compatibility

n OpcUa SecurityPolicy Basic256Sha256. This policy is used for
configurations with high security needs.

100

Chapter 9 - OPC UA Configuration



101

n OpcUa SecurityPolicy Aes128Sha256RsaOaep. This policy is used
for configurations with medium security needs.

n OpcUa SecurityPolicy Aes256-Sha256-RsaPss. This policy is used
for configurations with high security needs.

User Authentication

When “Allow Anonymous” is enabled from the ControlEdge Builder,
UA Clients can access the UA Server without providing a username
and password. When unchecked, UA Clients must provide credentials
for one of the three supported user names, Administrator, Engineer
or Operator.

Add a Certificate to the Server Trust List

This example demonstrates how to use the UaExpert client to add a
certificate to the server’s trust list.

1. Using the UaExpert client, connect to the server using security
and provide Administrator credentials.

2. Browse the address space to find the method AddCertificate.

a. Path: Root > Objects> Server > ServerConfiguration
>CertificateGroups > DefaultApplicationGroup>

Chapter 9 - OPC UA Configuration



TrustList > AddCertificate

3. Right click AddCertificate and select Call.

4. Click Load file….

5. Load the UaExpert Client Certificate which can be found by going
to Settings > Manage Certificates > Open Certificate Location.

a. The certificate you are looking for should be in this path:
C:\Users\<user>\AppData\Roaming\unifiedautomation
\uaexpert\PKI\own\certs\uaexpert.der

6. Check IsTrustedCertificate.

102

Chapter 9 - OPC UA Configuration



103

7. Click Call.

8. Restart the server.

The server should now have the UaExpert Client certificate in its trust
list. Repeat this procedure as necessary for additional client
certificates which need to be trusted by the server.

Remove a Certificate from the Server Trust List

To remove a certificate, use the method RemoveCertificate.

1. Path: Root > Objects > Server > ServerConfiguration
>CertificateGroups > DefaultApplicationGroup>
TrustList > RemoveCertificate

2. Right click RemoveCertificate and select Call.

Chapter 9 - OPC UA Configuration



3. Enter the Thumbprint of the certificate. Note that the Thumbprint
entered should have no blanks and all the letters in the
thumbprint must be uppercase. The thumbprint can be obtained
by opening the certificate and looking in the details tab. Shown
below is the thumbprint of uaexpert.der that was added in the
AddCertificate example above.

4. Check IsTrustedCertificate.
5. Click Call.

104

Chapter 9 - OPC UA Configuration



105

OPC UA Client
The ControlEdge OPC UA Client fully supports OPC UA Security by
providing an application instance certificate for application
authentication and implementing security policies defined by OPC
UA.

Default Certificate

The UA Client generates a self-signed application instance certificate
when a project is downloaded to the controller using ControlEdge
Builder. The certificate is unique to the ControlEdge PLC hosting the
UA client. This uniqueness is guaranteed by including the serial
number of the ControlEdge PLC in the application URI. The
application URI of the UA server and is defined as follows:

urn:[CPMSerialNumber]:Honeywell:ControlEdgePLC:UAClient

In addition to the URI, the certificate also includes the IP Addresses
assigned to both ETH1 and ETH2 thereby identifying the device
where the UA Client is running. These elements are stored within the
SubjectAltName extension of the application instance certificate. See
Application Instance Certificates for more information.

It will likely be necessary to obtain a copy of the ControlEdge PLC UA
client application instance certificate so that it may be added to the
trust list of a server to which the client will connect. Once the client
application instance certificate is generated, a copy of the certificate
is written to the memory card in the removable SD card slot if a card
has been inserted. Any project download action will cause a copy of
the certificate to be written to the SD card. Therefore, even after an
initial download has been executed, an SD card can be inserted later
and the project re-downloaded. The client certificate is written to the
SD card at the location shown below.

Chapter 9 - OPC UA Configuration



In some deployments, access to a removable SD card may not be
possible. When this is the case, simply initiate a secure connection to
the target OPC UA server. If the server does not yet trust the client
application instance certificate it will reject it and the UA_Connect
function block will display a security error code (typically
0x80130000, “BadSecurityChecksFailed”). Next, examine the target
server’s certificate storage and locate its “Rejected Certificates”
folder.

Here you will find a copy of the OPC UA client application instance
certificate. Simply move the certificate it into the trusted folder.

OPC UA Global Discovery Services

The OPC UA client is capable of interacting with an OPC UA Global
Discovery Server (GDS) in a manner similar to the “Push Model” of
the OPC UA server as described earlier. In the case of the OPC UA
client, this interaction is known as the “Pull Model”. With the Pull
Model, the OPC UA client will contact the GDS in order to request or
renew its application instance certificate and update its trust and
revocation lists. The application instance certificate returned to the
OPC UA client by the GDS is an issued certificate hence the GDS
performs the role of a certifying authority or CA. Refer to OPC UA
Certificate Management earlier in this section for a discussion on
certifying authorities.

The OPC UA client must be configured to enable GDS interaction.
Refer to the OPC UA Client configuration dialog within ControlEdge
Builder and shown below.

106

Chapter 9 - OPC UA Configuration



107

There are two options available under the “Advanced Configuration”
selection, “Internal” and “Global Discovery Server”. The Internal
selection is default and configures the UA client to generate its own
certificate. Selecting Global Discovery Server will enable the UA Client
Pull Model for certificate management where it will contact the GDS
and request an issued certificate. It is possible to switch between use
of Global Discovery Server and Internal. However, once the new
setting is selected, the project must be re-built and downloaded.
Upon the next secure connection request via a UA_Connect function
block (see below), either a new internal certificate will be generated
(where Internal is selected), or the client will contact the GDS and
request a new issued certificate. Note that in either case, upon first
connect request following the switch between “Internal” and “Global
Discovery Server” a new application instance certificate will be
assigned to the OPC UA client and trust issues must be
(re)considered with target UA servers. In general, connection to the
Global Discovery Server will require authentication credentials in the
form of GDS username/password. However, if the GDS does not
require user authentication, the Username and Password fields may
be left empty and the client will utilize an anonymous identity token
when connecting to the GDS.

Chapter 9 - OPC UA Configuration



Securing a Connection
OPC UA client connections initiated from the ControlEdge PLC can
be secured using the existing UaConnect function block and certain
block input parameters. Refer to “ControlEdge Builder Function and
Function Block Configuration Reference Guide”, chapter 20 for
complete detail on this function block and its inputs.

UASessionConnectInfo

UASessionConnectInfo DataType Description

SecurityMsgMode UASecurityMsgMode See UASecurityMsgMode section
below.

SecurityPolicy UASecurityPolicy See UASecurityPolicy section below.

UserIdentityToken UAUserIdentityToken See UAUserIdentityToken section
below.

Note that the UASessionConnectInfo structure has many other
components in addition to the fields identified above. These three
fields must be configured as detailed below in order to enable secure
connections.

UASecurityMsgMode

Value Name Description

0 BestAvailable Best available message security mode to the UA
server. The client receives the available message
security from the server and selects the best. This
could also result in level “none security”.

1 UASecurityMsgMode_ No security is applied. below.

108

Chapter 9 - OPC UA Configuration



109

Value Name Description

None

2 UASecurityMsgMode_
Sign

All messages are signed but not encrypted.

3 UASecurityMsgMode_
SignEncrypt

All messages are signed and encrypted.

UASecurityMsgMode is an integer value that configures the security
level for exchanged messages on the connection. Options are “None”,
that is, no security is applied, “Sign” which applies a digital signature
to each message to ensure message integrity or “SignEncrypt” which
means that all messages will additionally be encrypted, ensuring
message confidentiality.

UASecurityPolicy

Value Name Description

0 UASecurityPolicy_
BestAvailable

Provides the best available security connection to the UA
server. The client receives the available policies from the
server and selects the best. This can also result in level
“none security”.

1 UASecurityPolicy_
None

This policy is used for configurations with the lowest
security needs. It results in a connection that is not
secure.

2 UASecurityPolicy_
Basic128Rsa15

This policy is used for configurations with medium
security needs. It has been deprecated with the OPC UA
Specification Version 1.04 and should be enabled only
for backward compatibility.

3 UASecurityPolicy_
Basic256

This policy is used for configurations with medium
security needs. It has been deprecated with the OPC UA
Specification Version 1.04 and should be enabled only
for backward compatibility.

4 UASecurityPolicy_
Basic256Sha256

This policy is used for configurations with high security
needs.

Chapter 9 - OPC UA Configuration



UASecurityPolicy is an integer value that identifies the name for a set
of security algorithms and cryptographic key lengths. The list above
aligns with the set of security policies defined by the PLCOpen
specification. Refer to [PLC] for additional information. Note that
selecting ‘0’ (UASecurityPolicy_BestAvailable) may result in a security
policy which is not one of the above security policies (e.g.,
Aes128Sha256RsaOaep).

UAUserIdentityToken

UAUserIdentityToke
n DataType Description

UserIdentityTokenTy
pe

UAUserIdentityTokenTy
pe

Value Name Description

0 UAUITT_
Anonymous

See OPC UA
Part 7
UserToken –
Anonymous

1 UAUITT_
Username

See OPC UA
Part 7
UserToken –
User Name
Password

2 UAUITT_
x509

See OPC UA
Part 7 Chapter
User Token –
X509Certificat
e (Not
supported)

3 UAUITT_
IssuedToke
n

See OPC UA
Part 7 User
Token – Issued
Token (Not
supported)

TokenParam1 STRING In case of TokenType “Anonymous” the
Param1 will not be evaluated.

In case of TokenType “Username” the
Param1 contains the user name.

TokenParam2 STRING In case of TokenType “Anonymous” the
Param2 will not be evaluated.

110

Chapter 9 - OPC UA Configuration



111

UAUserIdentityToke
n DataType Description

In case of TokenType “Username” the
Param2 contains the user password.

UAUserIdentityToken identifies the particular user associated with
the connection. Where certificate exchange between client and server
ensures mutual authentication, the user identity token ensures
authorization. That is, OPC UA servers may restrict access to certain
server resources. For example, the server might allow any user to
read the value of any node in its address space but only certain users
would be permitted write access. In this example, when the strategy
of the program only requires reading values then a
UAUserIdentityTokenType of UAUITT_Anonymous is appropriate.
However, if the program strategy requires the ability to write to
certain nodes then the UAUserIdentityTokenType would need to be
set to UAUIT_Username and TokenParam1 and TokenParam2
configured with a username/password which has been granted write
access by the server.

OPC UA Server
ControlEdge 900 controller OPC UA Server enables the native OPC
UA client access to information on ControlEdge 900 controller.

System Architecture and Profiles
The figure below conceptually shows the deployment of the
ControlEdge PLC OPC UA Server as an embedded OPC UA server.
The same is true for the OPC UA Client and Modbus Master that are
also shown in the figure below as examples of data sources. These
examples are in addition to the local or remote I/O capabilities of
ControlEdge 900 controller, all of which can be exposed by the
ControlEdge 900 controller OPC UA server when the data sources are
configured within the eCLR.

Although not shown below, it is possible to establish a peer to peer
connection from the embedded OPC UA Client to the embedded OPC
UA Server on a different ControlEdge 900 controller.

Chapter 9 - OPC UA Configuration



The ControlEdge 900 controller OPC Server is based on the
Embedded UA Server profile defined in [OPC-7]. Refer to [PLC] for
additional companion specification profile information.

Access Level

Currently, the ControlEdge 900 controller OPC UA server allows both
read and write access of all exposed variables.

Security

Currently, the ControlEdge OPC UA Server is implemented with the
lowest security level.

Redundancy

The ControlEdge OPC UA Server does not support UA redundancy as
defined in [UA-4]. Furthermore, the ControlEdge OPC UA Server does
not maintain any state data. Therefore, if an unexpected
disconnection between the client and server occurs, it is the
responsibility of the clients to re-establish connections (i.e. sessions).
Even though none of OPC UA redundancy profiles are supported, the
Control Edge OPC UA Server does participate in redundancy related
usage scenarios supported in ControlEdge 900 controller.

112

Chapter 9 - OPC UA Configuration



113

Accessing the Server Object
The ControlEdge 900 controller OPC UA Server supports the
standardized entry points into its address space.

n OPC UA clients can browse to the Server object by traversing the
hierarchy starting at Root.

n Alternatively, OPC UA clients can use the Server object’s well-
known node id to directly access its objects, properties and
variables.

Use the diagram legend to understand the objects, variables and
properties that the ControlEdge 900 controller OPC UA Server
supports.

Server Diagnostics
The Sever Diagnostic object shown above, represents pertinent
diagnostic information related to the ControlEdge 900 controller
OPC UA server itself. All mandatory sub-components and properties
are supported [UA-5].

Chapter 9 - OPC UA Configuration



Accessing ControlEdge PLC data

Overview

DeviceSet is the entry point for OPC UA Clients that want to access
data from ControlEdge 900 controller. Shown below is an example
address space of the ControlEdge 900 controller OPC UA Server. It is
based on Object Types definitions found in the base UA specification
([UA-5]) as well as those definitions found in companion
specifications ([DI] and [PLC]). In this address space, there are three
example objects:

n eclrRes is an example of a Ctrl Resource

n SimpleUARead is an example of a Ctrl Program Instance.

n DftTask is an example of a Ctrl Task.

Figure 9-1: An example for address space of the ControlEdge 900
controller OPC UA Server

114

Chapter 9 - OPC UA Configuration



115

Ctrl Resources

All the data on ControlEdge 900 controller is accessible by browsing
to the Object instance derived from CtrlResourceType. The
Browsename of this Object instance is the name given to the
resource that represents the controller itself.

Shown below is the output of a 3rd party client connected to the
ControlEdge 900 controller OPC UA Server. The objects listed below
PLC_Demo represents the complete set of data associated with
ControlEdge 900 controller including Programs, Tasks, Global
variables and Diagnostics.

Ctrl Programs

In ControlEdge 900 controller, the instance of a POU assigned to a
task is treated as a program instance. Note that same program
instance in is able to be assigned to different task. They are treated
as different program instance.

Chapter 9 - OPC UA Configuration



Shown below is the output of a 3rd party client connected to the
ControlEdge 900 controller OPC UA Server, all Ctrl Program
instances executing in ControlEdge 900 controller are located under
Programs. For each Ctrl Program, the program variables and
Function Block instances including their child function blocks and
variables also appear in the address space.

The “With” reference is used to show the association between the
program instance and the task that executes the program.

ControlEdge 900 controller Diagnostics

See Overview for more information. OPC UA clients have access to
ControlEdge PLC diagnostic information exposed by the GlobalVars
and Diagnostics folder objects.

Located under the GlobalVars folder are the ControlEdge PLC
System Variables including PLC_SYS_TICK_CNT and PLC_MAX_
ERRORS.

Located under the Diagnostics folder are the ControlEdge 900
controller diagnostics as viewed from the ControlEdge Configuration
Workspace of ControlEdge Builder.

116

Chapter 9 - OPC UA Configuration



117

Program Variable NodeIds
OPC UA Clients can use NodeIds to read, write and monitor variables
for data changes. The NodeIds for accessing IEC 61131-3 program
elements are defined with string identifiers. The string identifiers
embed the underlying name that the ControlEdge 900 controller
OPC UA Server uses to access the ControlEdge 900 controller
variables. See Global and Diagnostic Variables for more information.

See Global and Diagnostic Variables for more information.

See Program Variables for more information.

Global and Diagnostic Variables

For Global and Diagnostic variables, the Identifier element of the
NodeId is defined as: Identifier = @GV. <Varname>

For example, the NodeId of the global variable ‘PLC_SYS_TICK_CNT’
is shown below.

Element NodeId

NamespaceIndex

IdentifierType String

Identifier @GV.PLC_SYS_TICK_CNT

TIP: For ControlEdge 900 controller OPC UA client, function
block “UaNamespaceGetIndex” is able to get the
NamespaceIndex when NamespaceUri of ControlEdge 900
controller OPC Server is available. See Key Parameters to
establish OPC UA communication for more information.

Program Variables

For Program local variables, the Identifier element of the Nodeid is
defined as:

Identifier = <Program Instance Name>.<Varname>

For example, the NodeId of the local variable ‘Connect’ defined within
the program instance ‘ReadWrite is shown below.

Element NodeId

NamespaceIndex

Chapter 9 - OPC UA Configuration



Element NodeId

IdentifierType String

Identifier ReadWrite.Connect

For Function Block instance variables, the Identifier element of the
NodeId is define as:

Identifier = <Program Instance
Name>.<FunctionBlockInstance>.<Varname>

The example below shows the NodeId of ‘ConnectHandle’ which is a
variable of the Function Block instance ‘UA_Read_Write_1’ in the
program ‘ReadWrite’

Element NodeId

NamespaceIndex

IdentifierType String

Identifier ReadWrite.UA_ReadWrite_1.ConnectionHandle

Data Types

Elementary types

The ControlEdge 900 controller OPC UA server maps all IEC 61131-3
elementary data types supported on the controller to an OPC UA built
in data type. The table below shows how the elementary data types
defined by IEC 61131 -3 map to OPC UA Built in data types.

IEC 61131-3 Elementary Data Types OPC UA Built In Data Types

BOOL Boolean

SINT SByte

USINT Byte

INT Int16

UINT UInt16

DINT Int32

UDINT Uint32

BYTE Byte

118

Chapter 9 - OPC UA Configuration



119

IEC 61131-3 Elementary Data Types OPC UA Built In Data Types

WORD UInt16

DWORD Uint32

REAL Float

LREAL Double

STRING String

TIME Double

TIP: When writing to a variable, the ControlEdge OPC UA Server
shall return a Bad_TypeMismatch error if the data type of the
written value is not the same type or subtype of the variable’s
DataType.

Structured Types

The IEC 61131-3 STRUCT declaration represents a structured data
type as an aggregate data type. IEC 61131-3 structured data types
defined in ControlEdge 900 controller are mapped by the
ControlEdge OPC UA Server to OPC UA structured data types as
defined in [PLC] section 5.2.3.4. Shown below is the definition of
ANALOG_INPUT_TYPE as an IEC 61131-3 structured type defined in
ControlEdge 900 controller.

TYPE
ANALOG_INPUT_TYPE
STRUCT

STS : USINT;
PV : REAL;
EUHI : REAL;
EULO : REAL;
EUHIEX : REAL;
EULOEX : REAL;

END_STRUCT;
END_TYPE

To illustrate how the ControlEdge 900 controller OPC UA Server
maps ANALOG_INPUT_TYPE, we connect a 3rd party sample client to
the ControlEdge 900 controller OPC UA Server.

Shown below is the partial Browse output for a variable.

Chapter 9 - OPC UA Configuration



Currently, the ControlEdge 900 controller OPC UA server implements
approach "c" as described in the section entitled “Many Variables and
/ or structured DataTypes” of [UA-3]. This means that an OPC UA
client can access the whole data structure as well as its individual
elements.

Shown below is the AddressSpace showing the variable, AIVar1 and
individual elements of the variable.

The following steps summarize how the ControlEdge 900 controller
OPC UA Server exposes IEC 61131-3 Structured Data Types such as
ANALOG_INPUT_TYPE to OPC UA Clients:

120

Chapter 9 - OPC UA Configuration



121

1. Creates an OPC UA Structured DataType with the same elements
as the IEC 61131-3 STRUCT.

2. Creates an OPC UA Complex Variable with the DataType created
in step 1.

3. Creates several simple Variables using simple DataTypes to
reflect the elements in the IEC 61131-3 STRUCT and exposes
them as variables of the Complex Variable created in step 2.

4. Adds the Variable created in step 2 to the AddressSpace to make
the data available to the OPC UA Client.

Additionally, the Datatype, which in our example is ANALOG_INPUT_
TYPE, is added to the DataTypeDictionary. The DataTypeDictionary
also contains all the other structured DataTypes supported by the
ControlEdge 900 controller OPC UA Server.

Arrays

The ControlEdge 900 controller array data type is mapped to an OPC
UA data type derived from the corresponding elementary data type.
The ‘ValueRank’ attribute is used in UA to provide the information if a
value is an array and the ‘ArrayDimensions’ attribute provides the
length of each dimension. Arrays appear as a single node in the UA
address space.

Example of an array data type in ControlEdge 900 controller:

TYPE
UaLocaleIds : ARRAY [1..5] OF STRING;

END_TYPE

A variable, say ‘LocaleIds’, of this type in a 900 controller program
will be mapped to the OPC data type String with the ‘ValueRank’
attribute set to 1 and ArrayDimensions[0] set to 5.

Chapter 9 - OPC UA Configuration



Arrays of Structured types

The ControlEdge 900 controller structured data arrays are modeled
along the lines of standard OPC UA array types such as
SubscriptionDiagnosticsArray defined in [UA-5]. Unlike an
elementary array that appears as a single node in the AddressSpace,
the structured data array will expose each entry of the array as a
separate node in the AddressSpace. This way a UA Client can access
the entire array, read an individual array entry or read individual
elements of an array entry.

Shown below is an IEC 61131-3 array of struct ANALOG_INPUT_
TYPE defined in ControlEdge 900 controller.

TYPE
AIList : ARRAY [1..5] OF ANALOG_INPUT_TYPE;

END_TYPE

The program DftInst has a variable AIDataValues of type AIList. The
AddressSpace with the variable AIDataValues is shown below:

122

Chapter 9 - OPC UA Configuration



123

Object Types

OPC UA Clients can browse for Server specific function block types
from the CtrlTypes\FunctionBlocks Folder object as shown here:

Chapter 9 - OPC UA Configuration



Reference types

The ControlEdge 900 controller OPC UA Server makes use of the
following Reference types defined in [PLC]:

n HasInputVar– used to reference variables declared with the key
word VAR_INPUT

n HasOutputVar– used to reference variables declared with the key
word VAR_OUTPUT

n HasInOutVar– used to reference variables declared with the key
word VAR_IN_OUT

124

Chapter 9 - OPC UA Configuration



125

n HasLocalVar– used to reference variables declared with the key
word VAR

n With– used to reference the Ctrl Task that executes a Ctrl
Program.

Configure ControlEdge 900 controller OPC UA Server

Configuration

Binding Protocol to Ethernet Ports

You must establish the physical address or endpoint that enables
OPC UA client access to the ControlEdge 900 controller OPC UA
Server. A maximum of two endpoints can be defined by binding the
ETH1 or ETH2 ports on ControlEdge 900 controller to OPC UA
Server. One or two endpoints are possible depending on if both ETH1
and ETH2 are bound to OPC UA Server.

1. From the Home Page of ControlEdge Builder, click the arrow
beside Configure Ethernet Ports, and select ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the IP address of the Ethernet port.

3. Under Protocol Binding, select OPC UA Server.

4. Click Save to complete the configuration.

Configuring Parameters for OPC UA Server

The ControlEdge 900 controller OPC UA Server supports the UA TCP
transport protocol which defaults to communicate on TCP port 4840.
This communication port as well as other connectivity and tuning
parameters are available for optional configuration. The ControlEdge
900 controller OPC UA server uses default values if no alternative
value has been configured. The default configuration is sufficient for
getting started with connectivity.

Chapter 9 - OPC UA Configuration



ATTENTION: Make sure that the OPC UA client’s time is
synchronized to the controller’s time.

1. From the Home Page of ControlEdge Builder, click Configure
Protocols > OPC UA Server. The OPC UA Server page appears.

2. Configure the parameters if required. See the following table for
the parameter description.
It is recommended to use the default values for the parameters.

Parameter Description

Port The port that clients will use to connect. For
example: opc.tcp://192.168.0.15:4840

The default value is 4840.

Max Request Age The maximum age of a request (in
milliseconds) the server allows. Zero value is
defined as unlimited.

The default value, which is 0, indicating that
the request age allowed is unlimited.

Table 9-1: OPC UA Server parameter description

126

Chapter 9 - OPC UA Configuration



127

Parameter Description

Max Session
Count

The maximum number of concurrent sessions
the server allows.

If you enter a value of 0, the number of
sessions allowed is unlimited.

The default value is 100.

Max Subscription
Per Session

The maximum number of subscriptions
allowed by the server for one session.

If you enter a value of 0, the number of
subscription allowed is unlimited.

Max Session Per
Client

The maximum number of concurrent sessions
the server allows per client.

The default value, which is 0, indicating that
the number of sessions allowed is unlimited.

Min Session
Timeout

The minimum timeout for a session (in
milliseconds).

If you enter a value of 0, the minimum timeout
is unlimited.

The default value is 10000.

Max Session
Timeout

The maximum timeout for a session (in
milliseconds).

If you enter a value of 0, the maximum timeout
is unlimited.

The default value is 3600000.

Max Browse
Continuation
Points

The maximum number of browse continuation
points managed by a session.

The default value is 0.

Max Browse
Results

The maximum number of browse results for
one browse operation.

The default value, which is 0, indicating that
the number of browse results is unlimited.

Max Nodes To The maximum number of nodes to browse.

Chapter 9 - OPC UA Configuration



Parameter Description

Browse The default value, which is 0, indicating that
the number of nodes allowed is unlimited.

Min Publishing
Interval

The minimum cycle rate of the Subscription.

The default value is 50 milliseconds.

Max Publishing
Interval

The maximum cycle rate of the Subscription.

The default value, which is 0, indicating that
the publishing interval allowed is unlimited.

Min Keep Alive
Interval

The minimum interval after which the
subscription sends a notification to the client.
This notification ensures the subscription is
maintained.

The default value is 5000 milliseconds.

Min Subscription
Lifetime

Provides assurance to the client that the
server is still alive.

The minimum period after which the
subscription will be deleted if no publish
request is received.

If you enter a value of 0, the subscription
lifetime allowed is unlimited.

The default value is 10000 milliseconds.

Max Subscription
Lifetime

Provides assurance to the server that the
client is still alive.

The maximum period after which the
subscription will be deleted if no publish
request is received.

The default value, which is 0 milliseconds,
indicating that the subscription lifetime
allowed is unlimited.

Max
Retransmission
Queue Size

The maximum number of messages allowed
per Subscription in the republish queue.

The default value is 10.

Max The maximum number of notifications allowed
per Publish.

128

Chapter 9 - OPC UA Configuration



129

Parameter Description

Notifications Per
Publish

The default value, which is 0, indicating that
the number of notifications allowed is
unlimited.

Max Data Queue
Size

The maximum size of data monitored item
queues.

The default value is 100.

Max Event
Queue Size

The maximum size of event monitored item
queues.

The default value is 1000.

Max Subscription
Count

The maximum number of subscriptions that
can be created.

The default value, which is 0, indicating that
the number of subscriptions allowed is
unlimited.

Max Monitored
Item Count

The maximum number of items that can be
monitored.

The default value, which is 0, indicating that
the number of items allowed is unlimited.

Max Monitored
Item Per
Subscription
Count

The maximum number of items that can be
monitored for each subscription.

The default value, which is 0, indicating that
the number of items allowed is unlimited.

Max Monitored
Item Per Session
Count

The maximum number of items that can be
monitored for each session.

The default value, which is 0, indicating that
the number of items allowed is unlimited.

For more information about the parameter descriptions, see the
specification in the https://opcfoundation.org/.

3. Click Save to complete the configuration.

Chapter 9 - OPC UA Configuration

https://opcfoundation.org/


Key Parameters to establish OPC UA communication

To establish the communication between OPC UA Sever and OPC UA
client, below key parameters of Server must be provided and be
required in the configuration in OPC UA side.

Server Endpoint URL

The URL of ControlEdge 900 controller OPC UA Server defined as
follows:

<ControlEdge PLC OPC Server URL>:= “opc.tcp://” <IP>”:”<Port>

“opc.tcp://” is the protocol string portion of the URL. This string is
constant since the protocol used by the ControlEdge 900 controller
OPC UA Server is TCP.

<IP> is the IP address of ETH1 or ETH2 on ControlEdge 900
controller.

<Port> is the port number for the transport protocol. Port number
4840 is the default for OPC UA.

In the following URL examples, the IP address of ETH1 port on
ControlEdge 900 controller is set to 192.168.1.10. The IP address of
ETH2 port on ControlEdge 900 controller is set to 192.168.2.10.

TIP: One or both URLs may exist depending on the port
configuration.

opc.tcp://192.168.1.10:4840

opc.tcp://192.168.2.10:4840

When both Ethernet ports are configured as shown in the example
above, the ControlEdge 900 controller OPC UA Server considers the
links to be redundant. In this case, the ControlEdge 900 controller
OPC Server is listening on both endpoints. When one link is lost,
clients can use the URL of the second link to connect to the Server. It
is worth noting that the ControlEdge 900 controller OPC UA Server
maintains the session created on the failed link until the session
timeout period expires after which the session will be deleted.

In the case of redundant ControlEdge 900 controller, the IP address
follows the primary controller. Therefore, if a switchover occurs, the
client reconnects to the ControlEdge 900 controller OPC UA Server
on the new primary with the same URL that was used to connect to
the server on the failed primary.

130

Chapter 9 - OPC UA Configuration



131

Namespace

OPC UA uses namespaces to uniquely differentiate between the
names and IDs it defines and those defined by companion
specifications or the local server. The ObjectTypes defined in the UA
specification for IEC 61131-3 derive from the OPC UA Device
Integration Types which in turn derive from the OPC UA Core
ObjectTypes. Thus the ControlEdge 900 controller OPC UA Server
includes these 3 namespaces in addition to its own namespace. The
list of namespaces used in the Server is shown below:

Namespace
Index Namespace Description

0 http://opcfoundation.org/UA/ Namespace for NodeIds and
BrowseNames defined in the
OPC UA specification.

1 URL:<IP Address>:
Honeywell:ControlEdgePLC:UAServer
where IP Address is the IP of the Ethernet
port that is bound to OPC UA Server. If
UA is enabled on both ETH1 and ETH2,
then the IP of ETH1 is used for IP
Address.

Namespace index 1 is
reserved for the local server,
for nodes specific to the
server like those shown in
section 4.1. Note that this
URI is also the ServerURI
(appears in index 0 of the
ServerArray property). It is
also the ApplicationURI in
the subjectAltName field of
the server’s certificate.

2 http://opcfoundation.org/UA/DI/ Namespace for NodeIds and
BrowseNames defined in
[DI].

3 http://PLCopen.org/OpcUa/IEC61131-
3/

Namespace for NodeIds and
BrowseNames defined in
[PLC].

5 URN: Honeywell:UA:ControlEdgePLC Namespace for NodeIds and
BrowseNames of nodes
used to access the
underlying ControlEdge PLC
data.

The exception is when these
nodes provide a standard

Chapter 9 - OPC UA Configuration



Namespace
Index Namespace Description

Property in which case the
BrowseName shall have the
namespace of the standards
body, even though the
NodeId will use this
namespace. For example,
the ParameterSet and the
GlobalVars object
components of eclrRes
shown in section 6.1 - the
BrowseName for
ParameterSet will use [DI]
namespace and the
BrowseName for GlobalVars
will use the [PLC]
namespace.

Namespace Uri is used for
OPC UA client to get the
NameSpaceIndex.

OPC UA Client

IEC 61131-3 OPC UA Function Blocks
The function blocks within the OPCUA library are the native IEC
61131-3 OPC UA Function blocks as defined in [PLC-C]. The figures
below illustrate the common interface of each function block
regardless of the task that it performs.

132

Chapter 9 - OPC UA Configuration



133

The table below references the above figures to describe the behavior
of the IEC 61131-3 OPC UA Function Blocks.

Interface Behavior

Execute
Input

The Function Block command or task is initiated by a rising edge at the
Execute input. While the value of Execute is equal to TRUE, the Busy,
Done and Error outputs can be examined independently to determine
the status of the function block execution. Furthermore, the Busy,
Done and Error outputs are mutually exclusive, i.e. only one of these
outputs can be set at a given time.

<input
parameters>

Input parameters are read at the rising edge of Execute input. Inputs
are only read once. Therefore, in order for changes to input parameters
to take effect, the Execute input must be re-initiated.

Chapter 9 - OPC UA Configuration



Interface Behavior

Busy Output The Busy output is an indication that the function block has not
completed. This output is set to TRUE at the rising edge of Execute. It
is reset when either Done or Error is set.

Done Output The Done output, when set, is the indication that the function block
has completed successfully. This output is used to trigger the next step
in a sequence of function blocks.

TIP: Once the Done output is TRUE, the Execute input must be
reset prior to re-trigger of UaConnect function block.

Error Output If an error occurs during the execution of the function block, this
output is set. The ErrorID output contains the error number. Refer to []
for the list of error codes.

l Since the function block did not complete successfully, the
Done output remains reset.

l Timeout input indicates the maximum time for the Function
Block to complete. If the timeout value expires, then the Error
output is set.

<output
parameters

Output parameters may be invalid while Busy output is set. Monitor the
Done output to trigger valid usage of output parameters (see flowchart
diagram below)

IEC 61131-3 OPC UA function block usage

Use of IEC 61131-3 OPC UA function blocks in the OPCUA library
requires special handling of BUSY, DONE and ERROR output
parameters as shown in the diagram to the right. Failure to perform
the special handling of the corresponding output parameters will
result in unexpected program errors. Consider use of the OPC UA
Helper Function Blocks to facilitate implementation of the required
special handling. See next section for details.

134

Chapter 9 - OPC UA Configuration



135

MDIS function block library
The MDIS library has a set of custom OPC UA function blocks
representing all the MDIS OPC UA object types as defined in the
MDIS OPC UA Companion Specification V1.2. The MDIS OPC UA
Object function blocks are used to obtain data from MDIS OPC UA
compliant Servers. For each MDIS object type, the specification
identifies a set of data variables as well as method definitions. The
MDIS function block library incorporates the data variables into each
block as function block parameters or ‘pins’. Separate method
function blocks are provided for each of the methods defined in the
specification.

Chapter 9 - OPC UA Configuration



When the block's Execute flag is first set and the rising edge is
detected, all the data variables of the object get added as Monitored
items to a subscription. A subscription handle (obtained from
UaSubscriptionCreate) is a required input for all MDIS Object
function blocks. The MDIS Object function block must execute
(implementation similar to UAMonitoredItem block), in order to
retrieve the current value for the data variables of the object. At each
rising edge, if a data change notification is available for the object
(i.e., one or more variable values have changed), the values are
copied to the output pins representing the data variables and the
Done flag is set. The Busy flag is set while the block waits for a data
change notification to become available. The Error flag is set if any
problem was encountered and the ErrorID output pin will hold the
associated error code. Note that Busy and Error/Done are mutually
exclusive. That is, if Busy is set then Error/Done will not be set.
Conversely, if either Done or Error is set, then Busy will not be set.
The following block diagram shows the sequence of operations
required to get data updates for a MDIS object. 

Every MDIS Object Function block will have an ErrorIDs pin which is
an array of DWORD. Each element of this array represents the status
of a data variable of the object. It provides status on whether a data
variable was successfully added to the subscription. Since many of
the data variables defined in the MDIS specification are optional, not
all servers will support all the variables for an object. The MDIS
function blocks will attempt to add all the defined variables,
including optional ones, to the subscription. If the server does not
implement the optional variable, then a BadNodeIdUnknown
(0x80340000) error status will be shown at the array index
associated with the variable. For those variables that were
successfully added, on receiving data change notifications, the
ErrorIDs are updated to report the quality of the data value of the
variable. Status code values which are not 0x0 indicate that
corresponding data variable’s value is not useable. The list of
possible status codes can be found in the ‘OPC UA Error code
Reference’ section.

136

Chapter 9 - OPC UA Configuration



137

The internal representation of the ErrorIDs parameter is shown
below. The variable associated with each index for an object FB is
fixed and is listed in the parameter section of each function block.

The MDIS Object function blocks are: 

n MDISDiscrtInstrObj

n MDISDigInstrObj

n MDISInstrObj

n MDISChokeObj

n MDISValveObj

In addition to the function blocks that represent the objects
themselves, there are function blocks for every method that can be
called on these objects. All method FBs require a connection handle
and Object NodeID as inputs.

The method function blocks are listed below:

n MDISObjEnableDisable

n MDISDiscrtInstrWriteVal

n MDISDigInstrWriteState

n MDISInstrWriteValue

n MDISChokeMove

n MDISChokeStep

Chapter 9 - OPC UA Configuration



n MDISChokeAbort

n MDISChokeSetCalcPos

n MDISValveMove

For more information on MDIS function block, see "MDIS function
block" in ControlEdge Builder Function and Function Block
Configuration Reference Guide.

Usage Considerations
The following table outlines a typical usage scenario when combining
OPC UA function blocks. Use the table to map the program phase
tasks to function blocks from the OPCUA or Honeywell Helper
libraries. See Prepare Phase for Reads, Writes or Method Calls for
more information.

Program
Phase Task OPC UA Library Honeywell Helper Library

Prepare Establish
connection to
UA Server

UaConnect HonUaConnectSecurityNone

Get the
namespace-
index of a
namespace-
URI for the
variables in
the target
OPC UA
server’s
address
space to be
read or
written

UaNamespaceGetIndex
(translatepath)

See note1

Get the node
handle for
the variables
in the target
OPC UA
servers
address
space to be
read or

UaNodeGetHandle

UaNodeGetHandleList

See note2

138

Chapter 9 - OPC UA Configuration



139

Program
Phase Task OPC UA Library Honeywell Helper Library

written

Get the
method
handle for a
method call

UaMethodGetHandle See note3

Translate
Path - Get
node
parameters
using path of
the node.

UaTranslatePath

UaTranslatePathList

UaTranslatePaths

HonUaTranslatePathList

Create a
subscription

UaSubscriptionCreate See note 4

Work Reading of
variables in
the
namespace
of UA Server

UaRead

UaReadList

HonUaReadNode

HonUaReadNodeList

Writing of
variables in
the
namespace
of UA server

UaWrite

UaWriteList

HonUaWriteNode

HonUaWriteNodeList

Execution of
methods
supported by
UA Server

UaMethodCall HonUaCallMethod

Use a
subscription
to monitor
variables

UaMonitoredItemAdd

UaSubscriptionOperate

HonUaSubscribeNode

Cleanup Release node
handle

UaNodeReleaseHandle

UaNodeReleaseHandleList

See note5

Release the
method

UaMethodReleaseHandle

Chapter 9 - OPC UA Configuration



Program
Phase Task OPC UA Library Honeywell Helper Library

handle

Remove
monitored
variables
from a
subscription

UaMonitoredItemRemove See note6

Release a
subscription

UaSubscriptionDelete

Terminate
the
connection to
OPC UA
Server

UaDisconnect HonUaConnectSecurityNone

Utilities Monitor
Handle to
signal loss of
handle due to
ControlEdge
PLC reset.

See note7 HonUaHandleDetector

Utility block
to monitor
and signal a
change in
state.

See note8 HonUaStateDetector

Converts a
variable with
variant data
type to string
format. This
is useful for
debugging
purposes.

HonUaVariantToString

Note:

1. Currently, there is no Honeywell Helper Function Block for
UaNamespaceGetIndex. However, refer to the structured text code for
HonUaTranslatePathList for an example.

140

Chapter 9 - OPC UA Configuration



141

Program
Phase Task OPC UA Library Honeywell Helper Library

2. Currently, there are no stand-alone Honeywell Helper Function Blocks for
UaNodeGetHandle and UaNodeGetHandleList. HonUaReadNode and
HonUaWriteNode are designed to include UaNodeGetHandle.
HonUaReadNodeList and HonUaWriteNodeList are designed to include
UaNodeGetHandleList.

3. Currently, there is no stand-alone Honeywell Helper Function Block for
UaMethodGetHandle. This is included in HonUaCallMethod.

4. Currently there is no stand-alone Honeywell Helper Function Block for simply
creating a subscription.

5. Currently, there are no Honeywell Helper Function Blocks for
UaNodeReleaseHandle, UaNodeReleaseHandleList and
UaMethodReleaseHandle.

6. Currently, there are no Honeywell Helper Function Blocks for
UaMonitoredItemRemove and UaSubscriptionDelete.

7. There are no IEC 61131-3 OPC UA blocks defined for these funtions.

8. There are no IEC 61131-3 OPC UA blocks defined for these funtions.

There are several ways to facilitate development of a PLC program
with OPC UA function blocks:

n Understand the OPC UA Function Block state model (Execute-
Busy-Done).

n Connect a graphical OPC UA Client to the target OPC UA server
(see tip below). Browse the target server address space to become
familiar with OPC UA communication parameters including:

l Node Identifier

l Node Namespace Index and associated Namespace URI

l Node data type

l Method Node ID and Object Node ID

n Use the Honeywell Helper Function Blocks. These function blocks
are implemented with structured text. Each helper function block
can be used directly in the same way function blocks from OPCUA
Library are used. Alternatively, use the Honeywell Helper Function
Blocks as examples to create custom helper function blocks.

Chapter 9 - OPC UA Configuration



TIP: Use a graphical OPC UA Client

Consider use of a graphical OPC UA Client to access attributes
of the target OPC UA server and the nodes within its address
space. The example below shows the Browse output from OPC
Foundation Sample Client for an individual node.

To determine the NodeId attributes (NamespaceIndex,
IdentifierType and Identifier), view the value to the right of the
NodeId object in the Browse output. In this example:
NamespaceIndex = 4
IdentifierType = String
Identifier = ReadWrite.LocaleIds

The following sections describe the detailed usage information to
perform work tasks such as UaRead, UaReadList, UaWrite,
UaWriteList or UaMethodCall. These sections follow the order of
tasks introduced in the table above (shown below graphically).

142

Chapter 9 - OPC UA Configuration



143

Prepare Phase for Reads, Writes or Method Calls

Establishing a connection to the target OPC UA server is the primary
objective of the Prepare Phase. OPC UA servers require a physical
network location or endpoint URL for connectivity. The endpoint URL
for an OPC UA server consists of several parts: prefix, host and port.
“opc.tcp://” is an example of a valid prefix portion of the URL. It
identifies the endpoint as an OPC Server and the protocol. The host
portion is either a hostname or IP address. The port number is the
target port of the OPC UA Server, which may vary among OPC UA
Server providers. Consult with the target OPC UA Server
documentation to verify the endpoint URL.

A new session is established each time a connection is established.

Establishing Connection with HonUaConnectSecurityNone

This function block uses the UaConnect function block to establish
an OPC UA session to a remote OPC Server using a specified Server
URL and Session name. The security related fields of
SessionConnectInfo are set to values that indicate no use of security.
If successfully established, the named session will have a 30 seconds
timeout.

Figure 9-2: HonUaConnectSecurityNone

VAR_INPUT

ServerEndpointURL STRING e.g.,
“opc.tcp://192.168.1.30:51210/UA/SampleServer”

SessionName STRING Each time Connect executes a new session is
created on the server. This name will be associated
with that session

Chapter 9 - OPC UA Configuration



VAR_OUTPUT

ConnectionHandle DWORD The handle associated with this connection. Handle
is valid until Disconnect is set.

Error BOOL If set, signals an error occurred when attempting to
connect

ErrorID DWORD Error ID if any, returned by the server

VAR_IN_OUT

Connect BOOL When set TRUE and if ConnectionHandle is zero, initiates a
new connection. Upon completion of 1 connection attempt
(successful or unsuccessful) will automatically reset to FALSE.

Disconnect BOOL Set to FALSE

Use the HonUaconnectSecurityNone function block as an example to
create a custom connect helper block if alternative values for non-
security related fields of SessionConnectInfo are required (such as
LocalIDs or SessionTimeout).

Accessing the Address Space of target OPC UA Server

The information that the target OPC UA Server makes available to
clients is referred to as its address space. The elements of the
address space are represented as a set of nodes. Refer to [OPC-3] to
address space concepts including nodes, node attributes and
interconnections. Using standard OPC UA notation, the diagram
below shows the set of nodes common to all OPC UA Servers. As
indicated by the diagram key, this set of nodes includes objects,
variables, and properties. The diagram also illustrates the
relationships between nodes. Use a graphical OPC UA client
connected to the target OPC UA Server to view the set of standard
nodes for the target OPC UA Server.

144

Chapter 9 - OPC UA Configuration



145

Every OPC UA node, regardless of its node type (e.g. object, variable,
property, etc.) is represented by a node identifier, which consists of
the following:

Element Nodeld

NamespaceIndex 1

IdentifierType String

Identifier Instrument_01.Temp

OPC UA uses namespaces to uniquely differentiate between the
names and IDs it defines and those defined by OPC UA companion
specifications (e.g. FDI) or the target OPC UA server itself. In the
example NodeId shown above, the NamespaceIndex is 1 which is the
index reserved for the “local” server. NamespaceIndex 0 is reserved
for OPC Foundation. It is the index to NodeIds and BrowseNames
defined in the OPC UA specifications. Consult with the target OPC UA
Server documentation for a list of supported name spaces.
Alternatively, use a graphical OPC UA Client connected to your target
OPC Server, to browse to the NameSpaceArray property node (see
diagram above). This node contains the required information for the
registered Namespaces on the target OPC UA Server. Each index in

Chapter 9 - OPC UA Configuration



the array is associated with a Namespace URI. Use the Namespace
URI with UaGetNamespaceIndex function block to resolve each
Namespace index from your PLC program. Since a namespace index
can change dynamically, best practice is to resolve the namespace
URI programmatically.

Prepare with base UA blocks Prepare with Honeywell Helper UA blocks

The input to UaNodeGetHandle (as
circled above) requires steps external
to PLC program to obtain the
nodeIDds within each registered
namespace of the target OPC UA
Server.

l Consult the target OPC UA
documentation

l Use graphical OPC UA client to
browse the address space

l Requires special handling to
ensure completion of base UA
block before passing input to
subsequent block.

l UaNodeGetHandlemaps target
OPC Server nodeId to a node
handle maintained by
ControlEdgePLC OPC UA
Client. Node handles must be
explicitly supplied to the base
read and write blocks.

The input to HonUaTranslatePathList (as
circled above) requires steps external to PLC
program to obtain starting NodeId and a list of
relative paths. This information is used by the
target OPC Server to obtain the nodeIds for
variables to read or write.
HonUaTranslatePathList optionally performs
the dynamic resolution to a given namespace
index. See Obtaining Nodelds with
HonUaTranslatePathList for more information.

TIP: HonUaReadNode,
HonUaReadNodeList, HonUaWriteNode,
HonUaWriteNodeList and
HonUaSubscribeNode use NodeIds rather
than node handles as input. The
mapping to node handles is built in to
these Honeywell helper function blocks.

The input to UaConnect and HonUaConnectSecurityNone requires steps external to PLC
program to obtain the URL of the target OPC UA Server.

146

Chapter 9 - OPC UA Configuration



147

Obtaining Nodelds with HonUaTranslatePathList

HonUaTranslatePathList is a convenient way to get NodeIds within a
single namespace registered with the target OPC UA server. It uses
UaNamespaceGetIndex and UaTranslatePaths.

This function block requires the nodeID as a starting point in the
address space of the target OPC UA server. HonUaTranslatePathList
optionally resolves the namespace index in relative paths. If the
substitution token ‘#’ is inserted into the relative paths in
RelativePathList then the block acquires the index of this Uri from
namespace table of the target server. It then substitutes that index at
each ‘#’.

For example, if a string in the RelativePathList is
"/#:Drum1001/#:LIX001/#:Output" and NameSpaceUri
"http://opcfoundation.org/sampleserver" is located at index 4 in the
namespace index table of the target server, then
HonUaTranslatePathList modifies the string to
"/4:Drum1001/4:LIX001/4:Output" prior to passing to the target
server for translation.

Figure 9-3: HonUaTranslatePathList

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdStartNode UaNodeID The RelativePathList is evaluated using this
node as a starting point.

RelativePathList String255List Relative paths to the target nodes using
NodeIdStartNode as a starting point. See above

Chapter 9 - OPC UA Configuration



VAR_INPUT

for syntax.

NamespaceUri STRING Supplied if NamespaceIndex substitution is
desired in any Relative Path. Otherwise, may be
set to empty string.

VAR_OUTPUT

Error BOOL If set, signals an error occurred when attempting
to translate paths

ErrorID DWORD Error ID if any, returned by the server

Done BOOL Flag indicating that the function block execution
has completed. This flag will be reset FALSE the
next time ExecuteTranslate is set TRUE.

NodeIdOutCount UINT Number of NodeIDs returned

NodeIdOutList UaNodeIDList Node IDs corresponding to the relative paths in
RelativePathList

NodeErrorIdList UaNodeIDList Error ID associated with translating the
corresponding relative path to a Node ID. Note
that ErrorID above will be set if any element of
this list has a status other than good.

VAR_IN_OUT

ExecuteTranslate BOOL When set TRUE, initiates the relative path to NodeID
translation. Upon completion of 1 such attempt
(successful or unsuccessful) will automatically reset to
FALSE.

148

Chapter 9 - OPC UA Configuration



149

Work Phase - Read/Write/Method Call

Work Phase with base UA blocks Work Phase with Honeywell Helper UA
blocks

Tip: Requires special
handling to ensure
completion of base
UA block before
passing input to
subsequent block

TIP: Node handle mapping is built-in
to HonUaRead, HonUaReadList,
HonUaWrite and HonUaWriteList

Chapter 9 - OPC UA Configuration



Reading a single variable

Figure 9-4: HonUaReadNode

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdRead UaNodeID Node ID whose data value is to be read.

IsArray BOOL Flag indicating whether or not the NodeIdRead
data value is an array.

ArrayIndex UINT If IsArray is TRUE then this identifies the array
index to read.

VAR_OUTPUT

DataStatus UDINT Status code associated with the DataValueOut

DataValueOut UAVariant Value of the node (attribute 13)

TimeStamp UADateTime Source timestamp associated with DataValueOut

ErrorID DWORD Error ID if any, returned by the server when attempting
to invoke the Read service.

Error BOOL If set, signals that an error occurred when attempting
to invoke the Read service .

ReadEnabled BOOL When set, indicates that block is enabled and read
service will be called with each task cycle.

150

Chapter 9 - OPC UA Configuration



151

VAR_IN_OUT

EnableRead BOOL When set TRUE, enables this read block. Read service will be
called with each task cycle. See ReadEnabled above to verify
that block is enabled.

DisableRead BOOL When set TRUE, disables this read block. Read service will not
be called with each task cycle. See ReadEnabled above to
verify that block is disabled.

Reading a list of variables

Figure 9-5: HonUaReadNodeList

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdCount UINT The number of Node IDs in NodeIdReadList

NodeIdReadList UaNodeIDList Node identifiers of the nodes whose values are
to be read by this block (max 20 identifiers).

IsArray BOOL Flag indicating whether or not the
NodeIdReadList data values are arrays

ArrayIndices UINTList If IsArray is TRUE then this identifies the array
index for each data value of NodeIdReadList to
read. NodeIdReadList and ArrayIndices must
contain the same number of elements.

Chapter 9 - OPC UA Configuration



VAR_OUTPUT

ErrorID DWORD Error ID if any, returned by the server when
attempting to invoke the Read service.

Error BOOL If set, signals that an error occurred when
attempting to invoke the Read service

ReadEnabled BOOL When set, indicates that block is enabled and
the Read service will be called with each task
cycle.

DataStatusList UaDWORDList Status code associated with corresponding
value of the DataValueOutList

DataValueOutList UAVariantList Value of each node (attribute 13)

TimeStampList UaDateTimeList Source Timestamp associated with
corresponding value of the DataValueOutList

NodeErrorIdList UaDWORDList Error ID associated with corresponding value
of the DataValueOutList. Note that ErrorID
above will be set if any element of this list has
a status other than good.

VAR_IN_OUT

EnableReadList BOOL When set TRUE, enables this read block. Read service will
be called with each task cycle. See ReadEnabled above to
verify that block is enabled.

DisableReadList BOOL When set TRUE, disables this read block. Read service will
not be called with each task cycle. See ReadEnabled
above to verify that block is disabled.

152

Chapter 9 - OPC UA Configuration



153

Writing a single variable

Figure 9-6: HonUaWriteNode

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdWrite UaNodeID Node ID whose data value is to be written.

IsArray BOOL Flag indicating whether or not the NodeIdWrite
data value is an array

ArrayIndex UINT If IsArray is TRUE then this identifies the array
index to write.

DataValue UAVariant Value to be written (attribute 13)

VAR_OUTPUT

ErrorID DWORD Error ID if any, returned by the server when attempting to
invoke the Write service.

Error BOOL If set, signals that an error occurred when attempting to
invoke the Write service

WriteEnabled BOOL When set, indicates that block is enabled and write service
will be called with each task cycle.

VAR_IN_OUT

EnableWrite BOOL When set TRUE, enables this write block. Write service will be
called with each task cycle. See WriteEnabled above to verify
that block is enabled.

DisableWrite BOOL When set TRUE, disables this write block. Write service will not

Chapter 9 - OPC UA Configuration



VAR_IN_OUT

be called with each task cycle. See WriteEnabled above to
verify that block is disabled.

Writing a list of variables

Figure 9-7: HonUaWriteNodeList

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdCount UINT The number of Node IDs in NodeIdWriteList

NodeIdWriteList UaNodeIDList Node identifiers of the nodes whose values are
to be written by this block (max 20 identifiers).

IsArray BOOL Flag indicating whether or not the
NodeIdWriteList data values are arrays

ArrayIndices UINTList If IsArray is TRUE then this identifies the array
index for each data value of NodeIdWriteList to
read.

NodeIdWriteList and ArrayIndices must contain
the same number of elements.

DataValueList UAVariantList Values to be written (attribute 13).

VAR_OUTPUT

ErrorID DWORD Error ID if any, returned by the server when
attempting to invoke the Write service.

154

Chapter 9 - OPC UA Configuration



155

VAR_OUTPUT

Error BOOL If set, signals that an error occurred when
attempting to invoke the Write service

WriteEnabled BOOL When set, indicates that block is enabled and the
Write service will be called with each task cycle.

NodeErrorIdList UaDWORDList Error ID associated with corresponding value of
the DataValueList when attempting to write the
value. Note that ErrorID above will be set if any
element of this list has a status other than good.

VAR_IN_OUT

EnableWriteList BOOL When set TRUE, enables this write block. Write service will
be called with each task cycle. See WriteEnabled above to
verify that block is enabled.

DisableWriteList BOOL When set TRUE, disables this write block. Write service will
not be called with each task cycle. See WriteEnabled
above to verify that block is disabled.

Calling a Method

Figure 9-8: HonUaCallMethod

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from
Connection block (e.g., “Connect_
SecurityNone” above)

NodeIdentifierObject UaNodeID Node ID of the object node whose method is

Chapter 9 - OPC UA Configuration



VAR_INPUT

to be called by this block

NodeIdentifierMethod UaNodeID Node ID of the method node to be called by
this block

InputArguments UAVariantList Input arguments for this method. Note that
some methods may not require any input
arguments.

Done BOOL Flag indicating that the method call has
completed. This flag will be reset FALSE the
next time ExecuteCall is set TRUE.

VAR_OUTPUT

ErrorID DWORD Error ID if any, returned by the server when
attempting to invoke the Call service.

Error BOOL If set, signals that an error occurred when
attempting to invoke the Call service

OutputArguments UAVariantList Output arguments returned by this method.
Note that some methods may not return output
arguments

InputArgResults UaDWORDList Status code associated with each argument in
the InputArguments.

VAR_IN_OUT

ExecuteCall BOOL When set TRUE, invokes the method call. Upon completion of
1 method call attempt (successful or unsuccessful) will
automatically reset to FALSE.

156

Chapter 9 - OPC UA Configuration



157

Work Phase - Subscripbe for Variable Notifications

Work Phase with base UA blocks Work Phase with Honeywell Helper UA
blocks

TIP: Requires special handling to
ensure completion of base UA
block before passing input to
subsequent block.

TIP: Node handle mapping is built-
in to HonUaSubscribeNode.

Chapter 9 - OPC UA Configuration



Subscribing for single variable notifications

VAR_INPUT

ConnectionHandle DWORD Connection handle obtained from Connection
block (e.g., “Connect_SecurityNone” above)

NodeIdSubscribe UaNodeID The NodeId of the data variable node which will be
added as monitored item to the subscription.

IsArray BOOL Flag indicating whether or not the
NodeIdSubscribe data value is an array.

VAR_OUTPUT

ErrorID DWORD Error ID if any, returned by
the server when attempting
to invoke the subscription or
monitored item service.

Error BOOL If set, signals that an error
occurred when attempting to
invoke the subscription or
monitored item service.

SubscriptionEnabled BOOL A flag indicating that the
subscription is currently
enabled.

DataChangeNotification UaDataChangeNotification Notifications for the
subscribed node. A
notification will occur when

158

Chapter 9 - OPC UA Configuration



159

VAR_OUTPUT

the value or the status of the
variable changes.

VAR_IN_OUT

EnableSubscription BOOL Set the subscription enabled.

DisableSubscription BOOL Set the subscription disabled.

Cleanup Phase

Releasing resources that were previously acquired during the Prepare
and Work Phases is the primary objective of the Cleanup Phase.

Cleanup - Read/Write/Method Call;

Cleanup with base UA blocks Cleanup with Honeywell Helper UA blocks

Cleanup - Subscribe for Variable Notifications

Cleanup with base UA blocks Cleanup with Honeywell Helper UA
blocks

Chapter 9 - OPC UA Configuration



Terminate Connection with HonUaConnectSecurityNone

This function block uses the UaDisconnect function block to
terminate an OPC UA session to a remote OPC Server using the
ConnectionHandle.

Figure 9-9: Terminate Connection with HonUaConnectSecurityNone

VAR_INPUT

ServerEndpointURL String255 e.g.,
“opc.tcp://192.168.1.30:51210/UA/SampleServer”

SessionName STRING Each time Connect executes a new session is
created on the server. This name will be associated
with that session

VAR_OUTPUT

ConnectionHandle DWORD The handle associated with this connection. Handle
is valid until Disconnect is set.

Error BOOL If set, signals an error occurred when attempting to
connect

ErrorID DWORD Error ID if any, returned by the server

VAR_IN_OUT

Connect BOOL Set to FALSE

Disconnect BOOL When set TRUE initiates a disconnect of the current
ConnectionHandle (as indicated by ConnectionHandle). Upon
completion of 1 disconnect attempt (successful or
unsuccessful) will automatically reset to FALSE.

160

Chapter 9 - OPC UA Configuration



161

Utilities

In addition to the helper blocks described in the previous Prepare
and Work phase sections, the Honeywell OPC UA Helper Block library
includes several utilities that are convenient for error detection, error
handling and debugging.

Monitoring the target OPC UA Server handle

HonUaHandleDetector prevents usage of an invalid Server handle to
the target OPC Server. Currently, a server handle is invalidated if
ControlEdge 900 controller resets. A future release of ControlEdge
900 controller will allow OPC UA server handles to ride through a
ControlEdge 900 controller reset.

Figure 9-10: HonUaHandleDetector

VAR_INPUT

Enable BOOL When set TRUE enables the block functionality. When set
FALSE disables the block functionality.

DWORDIn DWORD When Enable is set TRUE, the block will monitor DWORDIn for
change to 0. If this occurs then SignalOut is set TRUE.

VAR_OUTPUT

SignalOut BOOL See DWORDIn above

Detecting Boolean Resets

HonUaStateDetector is a convenient way to detect that a Boolean flag
has been reset from TRUE to FALSE.

Chapter 9 - OPC UA Configuration



Figure 9-11: HonUaStateDetector

VAR_INPUT

Enable BOOL When set TRUE enables the block functionality. When set FALSE
disables the block functionality.

BOOLIn BOOL When Enable is set TRUE, the block will monitor BOOLIn for
change to FALSE. If this occurs then SignalOut will be set TRUE.

VAR_OUTPUT

SignalOut BOOL See BOOLIn above

Converting Variant Values to String

HonUaVariantToString is useful for debugging purposes. It converts
the fields of a variant to a single string.

Figure 9-12: HonUaVariantToString

VAR_INPUT

VariantIn UAVariant Variant value (i.e., as returned from FB “ReadNode”)

VAR_OUTPUT

StringOut STRING String representation of VariantIn

162

Chapter 9 - OPC UA Configuration



163

Configuring an OPC UA Client

Binding Protocol to Ethernet Ports

You must establish the physical address or endpoint that enables
OPC UA client access to the ControlEdge 900 controller OPC UA
Server.

1. From the Home Page of ControlEdge Builder, click the arrow
beside Configure Ethernet Ports, and select ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the IP address of the Ethernet port.

3. Under Protocol Binding, select OPC UA Client.

4. Click Save to complete the configuration.

Configuring Parameters for OPC UA Client

OPC UA client maintains sessions in response to each execution of
the UaConnect function block. One execution of the UaConnect
function block contains that one corresponding session will be
created by the OPC UA client on the controller and correspondingly
one session will be created on the target OPC UA server.

ATTENTION: Make sure that the OPC UA client’s time is
synchronized to the controller’s time.

To configure an OPC UA client:

1. Click Configure Protocols > OPC UA Client. The OPC UA Client page
appears.

2. Select the values for the Max Session Count and Max Subscription
Per Session parameters.
See the following table for the parameter description.

Parameter Description

Max Session
Count

The maximum number of concurrent
sessions allowed by the client.

If you enter a value of 0, the number of
sessions allowed is unlimited.

Table 9-2: OPC UA Client parameter description

Chapter 9 - OPC UA Configuration



Parameter Description

The default value is 100.

Max
Subscriptions Per
Session

The maximum number of subscriptions
allowed by the client for one session.

If you enter a value of 0, the number of
subscriptions allowed is unlimited.

3. Click Save.

Importing OPC UA Library

To import OPC UA Library

1. In IEC Programming Workspace, from the project tree window, right-
click Libraries and select Insert> Firmware Library.

The Include library dialog appears.

2. Open OPCUA folder and select opcua.fwl, then click Include.

The OPCUA library is displayed under Libraries.

Importing Data Types of HonUaFbHelperTypes

To import Data Types of HonUaFbHelperTypes

1. In IEC Programming Workspace, from the project tree window, select
Data Types, click File> Import.
The Import / Export dialog appears.

2. Select Extended IEC 61131-3 Import, and click OK.
The Object types dialog appears.

3. Select Datatypes and click OK.
The Extended IEC 61131-3 dialog appears.

4. Browse to \Users\Public\Documents\ControlEdge
Builder\Libraries\OPCUAFBHelpers”, and select the target data
type. Click OK.

The HonUaFbHelperTypes is displayed under Data Types.

164

Chapter 9 - OPC UA Configuration



165

Importing an OPC UA POU

1. InIEC Programming Workspace, from the project tree window, select
Logical POUs, and click File> Import.
The Import / Export dialog appears.

2. Select Extended IEC 61131-3 Import, and click OK.
The Object types dialog appears.

3. Select POU and click OK.
The Extended IEC 61131-3 dialog appears.

4. Browse to \Users\Public\Documents\ControlEdge
Builder\Libraries\OPCUAFBHelpers”, and select the target POU.
Click OK.

The HonUaFbHelpers is displayed under Logic POUs.

Configuring an OPC UA Logic

ControlEdge PLC OPC UA Client supports data value read and write
through below logic sequence.

Make sure that the OPC UA Server's time is synchronized to the
Client (the controller's) time.

To configure an OPC UA Logic

1. Establish the connection between OPC UA Client and OPC UA
Server;

2. Get the namespace index of OPC UA Server once the connection
is successfully established;

3. Get the Node handle;
4. Read the value of or write a value to a variable. The following

diagram presents the data access workflow:

Chapter 9 - OPC UA Configuration



Example logic for reading list of variables from OPC UA Server

Two main function blocks with some auxiliary logics are used for this
application.

1. HonUaConnectSecurityNone – Used for all read/write
applications, to establish the connection with OPC UA server or
disconnect an existing connection.

l ServerEndpointURL and sessionName need to be configured

l Parameter “Disconnect” used to disconnect an existing
connection, as there has a auxiliary function block to monitor
the status of the connection and handle error scenarions
(Enable =1): If no connection is detected
(ConnectionHandle=0), this FB 2 will trigger the execution of
FB “Ua…” to reestablish the connection.

Only in two scenarios the value of “ConnectionHandle” will be 0,
after power on or disconnect the connection manually, so if user
want to disconnect the connection, normally procedure is disable
this HonUaHandleDetector first and then do disconnect
operation.

2. HonUaReadNodeList

l DisableReadList – When set TRUE, disables this read block.
Read service will not be called with each task cycle.

l EnableReadList – When set TRUE, enables this read block.
Read service will be called with each task cycle. Output of
HonUaReadNodeLIst connects to this parameter and the rise
edge of this parameter will trigger the execution of
HonUaConnectSecurityNone.

166

Chapter 9 - OPC UA Configuration



167

l NodeIdCount – The number of Node IDs in NodeIdWriteList.
Define how many variable are expected to be read from OPC
UA Server.

l NodeIdReadList – Node identifiers of the nodes whose values
are to be read by this block (max 20 identifiers).Structure type,
consists of three elements
IdentifierType – Array, to define the identifier type of the
variables expected to be read from Server, we can get detail
information of the variable in Server side, normally it is string
type (Initial value =1);
Identifier – Array, The variable name
Namespace – Array, define namespace for each variable, we
can get detail information of the variable in Server side or we
can use “GetNameSpace”.

OPC UA project sizing and performance
To ensure nominal performance characteristics when executing OPC
UA based projects it is recommended that overall memory and CPU
usage in the PLC remain less than 50%. This section provides
guidelines on factors to consider when enabling OPC UA in
ControlEdge 900 controller.

When constructing an OPC UA project there are two factors to
consider:

n OPC UA Project Size
Each project and its related functions require an amount of
application data based on its size. If a given project is too big and
its application data usage eclipses more than 50% risks
instability. The project sizing is measured based on Internal
Variables which are directly related to the application data usage
within the PLC. More details regarding the sizing of projects is
provided in the OPC UA Project Sizing section below.

n OPC UA Performance
Performance is how the constructed project impacts the PLC. In
some cases, it is possible to create a large project that is within
the project sizing requirements but requires too many resources
to be reliable. The project performance is based on the number of
Data Items (e.g. process variables) expected to be read/written

Chapter 9 - OPC UA Configuration



between the OPC UA client and all remote OPC UA servers.
Details on how accessing data items affects the PLC are provided
in the OPC UA Client Performance, OPC UA Server Performance,
OPC UA MDIS Client Performance, and OPC UA MDIS Server
Performance sections below.

OPC UA Project Sizing

OPC UA Function Block Instances

OPC UA Function blocks, like all IEC 61131-3 function blocks, add
internal variables to the PLC that consume application data memory.
The PLC reserves space for application data. To ensure proper
functionality, the application data in use should remain at or below
50%. To achieve this, the count of internal variables added to the
PLC by all Function block instances should be less than 200,000.
There are two methods to estimate the number of internal variables
that will be added by a project. The first is less accurate but allows
quick estimation using just the total number of data items. The
second estimation method can be used during project design phase.

TIP: Maximum 200,000 Internal Variables

n Method #1: Number of Internal Variables Per Data Item
Depending on the method of data access used by the OPC UA
Client, it is possible to calculate the number of internal variables
that will be added to the controller. The calculations take into
consideration the additional blocks required to support the
operations in the table below such as establishing a connection
and resolving node IDs. The table below can be used to accurately
estimate the internal variable count for projects built to access
from 10 to a 1000 data items. 

Operations Internal Variable Per Data Item

Read 165

Write 155

Subscription 1480

168

Chapter 9 - OPC UA Configuration



169

NOTE: Reads and writes use fewer internal variables when
using ReadList and WriteList blocks versus Read and Write
blocks.

n Method #2: Number of Internal Variables Per Function Block
During the project design phase, the internal variable count can
be estimated from the set of function blocks which comprise the
project. The tables below identify the number of internal variables
required to support the function block. Adding together the
internal variable counts for each function block type instance in
the project will yield a reasonably accurate count of internal
variables for the project.

Helper Block Type Internal Variable Per Function
Block Instance

HonUaCallMethod 1622

HonUaConnectSecurityNone 69

HonUaHandleDetector 31

HonUaReadNode 193

HonUaReadNodeList 3043

HonUaManageSubscription 74

HonUaStateDetector 22

HonUaSubscribeNode 1442

HonUaTranslatePathList 317

HonUaVariantToString 38

HonUaWriteNode 182

HonUaWriteListNode 2858

OPC UA Function Block
Type

Internal Variable Per Function
Block Instance

UaConnect 37

UaDisconnect 14

Chapter 9 - OPC UA Configuration



OPC UA Function Block
Type

Internal Variable Per Function
Block Instance

UaMethodCall 539

UaMethodGetHandle 24

UaMethodReleaseHandle 16

UaMonitoredItemAdd 449

UaMonitoredItemRemove 16

UaNamespaceGetIndex 21

UaNodeGetHandle 20

UaNodeGetHandleList 99

UaNodeReleaseHandle 16

UaNodeReleaseHandleList 18

UaRead 104

UaReadList 1781

UaSubscriptionCreate 21

UaSubscriptionDelete 14

UaSubscriptionOperate 21

UaTranslatePath 27

UaTranslatePaths 180

UaWrite 101

UaWriteList 1800

n 100 Data Item Reads and 100 Data Item Writes Example

l Method #1: Estimating the project size by data item count
To determine the size of this project we can use the first
method to estimate the number of internal variables. This
project will have 100 reads and 100 writes, each read on
average will use 165 internal variables and each write will use
155 internal variables. This results in an estimated 32,000
internal variables used.

170

Chapter 9 - OPC UA Configuration



171

Name of the
Function Block

Number of
Instances

Internal Variables
per Instance

Internal
Variables

Reads 100 165 16500

Writes 100 155 15500

Subscriptions 0 1480 0

Total 32000

l Plan the project layout
To have the most efficient project design this project will use
ReadList and WriteList blocks which support 20 data items at
a time. Since we are reading and writing 100 data items, this
project will need 5 ReadList blocks and 5 WriteList blocks. All
the required function blocks, the required number of instances,
and internal variable count are listed in the table below.

l Method #2: Estimating the project size by Function Block
Estimating the project size by data item can be inaccurate. If
the project is close to the limit of 200,000 internal variables it
is best to double check the project sizing to ensure the project
will be within the limitation. In this case, the project size is so
small estimating by function block is not necessary but is done
for completion of this guide. Using the table below we can see
the calculated internal variable usage will be 29,925.

Name of the Function
Block

Number
of
Instances

Internal
Variables
per
Instance

Internal
Variables

HonUaReadNodeList 5 3043 15215

HonUaWriteNodeList 5 2858 14290

HonUaStateDetector 10 22 220

HonUaConnectSecurityNon
e

2 69 138

HonUaHandleDetector 2 31 62

Total 29925

n 20 Variable Subscriptions example

Chapter 9 - OPC UA Configuration



l Method #1: Estimating the project size by data item count
To determine the size of this project by data item count we
show that a subscription requires 1480 internal variables per
data item. This result in 29600 internal variables used.

Name of the
Function Block

Number of
Instances

Internal Variables
per Instance

Internal
Variables

Reads 0 165 0

Writes 0 155 0

Subscriptions 20 1480 29600

Total 29600

l Plan the project layout
To create this project, we will need 20 Subscribe blocks, each
to read 1 data item. All the required function blocks, the
required number of instances, and internal variable count are
listed in the table below.

l Method #2: Estimating the project size by function block
Again, this project is so small that function block estimation is
not necessary but is included for the completeness of this
guide. From the table below we can see the actual usage is
29,380 internal variables.

Name of the Function
Block

Number
of
Instances

Internal
Variables
per
Instance

Internal
Variables

HonUaSubscribeNode 20 1442 28840

HonUaStateDetector 20 22 440

HonUaConnectSecurityNon
e

1 69 69

HonUaHandleDetector 1 31 31

Total 29380

172

Chapter 9 - OPC UA Configuration



173

OPC UA Client Performance

Volume of Remote Data Items Accessed and Related
Task Interval

Using the number of data items accessed, we can estimate the
performance of the project. In general, the larger the project the
larger the impact. Refer to the graphs below which illustrate CPU and
RAM usage based on various combinations of variable count and
eCLR task interval. CPU usage is heavily influenced by the program
task interval. Generally, tasks faster than 250ms should be avoided
when building OPC UA projects. As previously stated, maintaining
cumulative CPU usage and memory usage at or below 50% will
ensure nominal performance.

Reads

Writes

Subscriptions

Chapter 9 - OPC UA Configuration



OPC UA Server Performance
The OPC UA server's impact on platform CPU and RAM is primarily
defined by external OPC UA client activity. An analysis of this impact
at various loading levels is depicted in the graphs below. Each graph
includes percent usage based on number of data items and sampling
interval. The following data was collected using subscriptions;
however, similar results can be expected when executing demand
reads and writes at these rates.

174

Chapter 9 - OPC UA Configuration



175

Impact of OPC UA MDIS Function Blocks on Project
Sizing and Performance

The MDIS OPC UA Object Function blocks are special-purpose blocks
that are only used to connect and retrieve data from MDIS OPC UA
compliant Servers. The blocks are designed specifically for the MDIS
OPC UA information model as defined in the MDIS OPC UA
Companion Specification V1.2.

More information on MDIS and the MDIS OPC UA specification can
be found here: https://opcfoundation.org/markets-
collaboration/mdis/.

Chapter 9 - OPC UA Configuration



MDIS OPC UA Project Sizing
The MDIS Function blocks consume fewer internal variables than the
OPC UA function blocks mainly because each Function block knows
in advance the parameters and data types of the parameters to be
exposed. For example, the MDISInstrObj function block knows that
every MDIS Instrument Object has a mandatory variable called
“ProcessVariable” of type ‘REAL’. This prior knowledge of the object
types allows for more efficient function blocks.

Each OPC UA MDIS function block instance in the project represents
a MDIS object within the MDIS server’s address space. To estimate
project size, the project engineer must first determine the collection
of instruments, valves and other MDIS objects that together
represent the target system. Adding together the internal variable
counts for each function block type instance in the project will yield a
reasonably accurate count of internal variables for the project.

MDIS Block Type Internal Variables Per Function Block Instance

MDISChokeAbort 16

MDISChokeMove 22

MDISChokeObj 63

MDISChokeSetCalcPos 18

MDISChokeStep 24

MDISDigInstrWriteState 18

MDISDigitalInstrObj 40

MDISDiscreteInstrObj 40

MDISDiscrtLnstrWriteVal 18

MDISInstrObj 56

MDISInstrWriteValue 18

MDISObjEnableDisable 18

MDISValveMove 26

MDISValveObj 58

176

Chapter 9 - OPC UA Configuration



177

Varied MDIS Object Example

n Plan the project layout
l The example below includes a collection of commonly used

MDIS function blocks. MDIS function blocks are designed
specifically to exchange data between the block and the
corresponding MDIS object within the server's address space.
Therefore, use of MDIS function blocks requires the use of
additional OPC UA function blocks to manage connections,
subscriptions and related functionality. A representative
collection of related OPC UA function blocks is included in the
example below.

n Estimate the project size by function block

The table below calculates the project size to be 2140 Internal
Variables

Name of the Function Block
Number of
Instances

Internal Variables Per
Instance

Internal
Variables

MDISInstrObj 15 56 840

MDISDigitalInstrObj 1 40 40

MDISDiscreteInstrObj 2 40 80

MDISValveObj 2 85 170

MDISObjEnableDisable 20 18 360

HonUaConnectSecurityNone 1 69 69

HonUaManageSubscription 1 79 79

HonUaStateDetector 20 22 440

HonUaHandleDetector 2 31 62

Total 2140

MDIS OPC UA Client Performance
Each MDIS object results in several subscribed data variables in the
server. The data items per MDIS object shown in the table below
assumes each MDIS object in the server implements all MDIS
optional features. The performance impact based on the total
number of subscribed data variables is shown in the graphs below.

Chapter 9 - OPC UA Configuration



When estimating the performance impact MDIS will have on the PLC,
the total number of data items for a project must calculated. This can
be calculated by counting the number of MDIS objects and adding
together the total number of data items per object. The resulting data
item count can be compared to the following graphs.

MDIS Object Type Data Items Per MDIS Object

MDISChokeObj 17

MDISDigitalInstrObj 7

MDISDiscreteInstrObj 7

MDISInstrObj 11

MDISValveObj 16

178

Chapter 9 - OPC UA Configuration



179

MDIS OPC UA Server Performance
The OPC UA Server handles MDIS objects the same way as all other
objects. The resulting performance graphs provided in the OPC UA
Server Performance section will remain the same regardless of what
function blocks are being used on the OPC UA Client.

OPC UA Error Code Reference
See the following table for OPC UA function block error codes
definition:

Error Code Symbolic ID Description

16#00000000 success NA

16#00000001 FB_GEN_ERR_INPUT_PARA_INVALID The input parameter is
invalid.

16#00000002 FB_GEN_ERR_RCV_RSP_TIME_OUT Time out and no
response data is
received.

16#00000003 FB_GEN_ERR_INTERNAL_TIME_OUT IPC is time out.

16#00000004 FB_GEN_ERR_INVALID_REQUEST The request is invalid.

0x00000000 OpcUa_Good The operation was
successful.

0x80000000 OpcUa_Bad The operation was
unsuccessful but no
specific reason is
known.

0x80010000 OpcUa_BadUnexpectedError An unexpected error
occurred.

0x80020000 OpcUa_BadInternalError An internal error
occurred as a result of
a programming or
configuration error.

0x80030000 OpcUa_BadOutOfMemory Not enough memory
to complete the
operation.

0x80040000 OpcUa_BadResourceUnavailable An operating system
resource is not

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

available.

0x80050000 OpcUa_BadCommunicationError A low level
communication error
occurred.

0x80060000 OpcUa_BadEncodingError Encoding halted
because of invalid data
in the objects being
serialized.

0x80070000 OpcUa_BadDecodingError Decoding halted
because of invalid data
in the stream.

0x80080000 OpcUa_BadEncodingLimitsExceeded The message
encoding/decoding
limits imposed by the
stack have been
exceeded.

0x80B80000 OpcUa_BadRequestTooLarge The request message
size exceeds limits set
by the server.

0x80B90000 OpcUa_BadResponseTooLarge The response message
size exceeds limits set
by the client.

0x80090000 OpcUa_BadUnknownResponse An unrecognized
response was received
from the server.

0x800A0000 OpcUa_BadTimeout The operation timed
out.

0x800B0000 OpcUa_BadServiceUnsupported The server does not
support the requested
service.

0x800C0000 OpcUa_BadShutdown The operation was
cancelled because the
application is shutting
down.

0x800D0000 OpcUa_BadServerNotConnected The operation could
not complete because

180

Chapter 9 - OPC UA Configuration



181

Error Code Symbolic ID Description

the client is not
connected to the
server.

0x800E0000 OpcUa_BadServerHalted The server has
stopped and cannot
process any requests.

0x800F0000 OpcUa_BadNothingToDo There was nothing to
do because the client
passed a list of
operations with no
elements.

0x80100000 OpcUa_BadTooManyOperations The request could not
be processed because
it specified too many
operations.

0x80DB0000 OpcUa_BadTooManyMonitoredItems The request could not
be processed because
there are too many
monitored items in the
subscription.

0x80110000 OpcUa_BadDataTypeIdUnknown The extension object
cannot be
(de)serialized because
the data type id is not
recognized.

0x80120000 OpcUa_BadCertificateInvalid The certificate
provided as a
parameter is not valid.

0x80130000 OpcUa_BadSecurityChecksFailed An error occurred
verifying security.

0x80140000 OpcUa_BadCertificateTimeInvalid The Certificate has
expired or is not yet
valid.

0x80150000 OpcUa_BadCertificateIssuerTimeInvalid An Issuer Certificate
has expired or is not
yet valid.

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

0x80160000 OpcUa_BadCertificateHostNameInvalid The HostName used to
connect to a Server
does not match a
HostName in the
Certificate.

d 0x80170000 OpcUa_BadCertificateUriInvali The URI specified in
the
ApplicationDescription
does not match the
URI in the Certificate.

0x80180000 OpcUa_BadCertificateUseNotAllowed The Certificate may
not be used for the
requested operation.

0x80190000 OpcUa_BadCertificateIssuerUseNotAllowed The Issuer Certificate
may not be used for
the requested
operation.

0x801A0000 OpcUa_BadCertificateUntrusted The Certificate is not
trusted.

0x801B0000 OpcUa_BadCertificateRevocationUnknown It was not possible to
determine if the
Certificate has been
revoked.

0x801C0000 OpcUa_
BadCertificateIssuerRevocationUnknown

It was not possible to
determine if the Issuer
Certificate has been
revoked.

0x801D0000 OpcUa_BadCertificateRevoked The Certificate has
been revoked.

0x801E0000 OpcUa_BadCertificateIssuerRevoked The Issuer Certificate
has been revoked.

0x801F0000 OpcUa_BadUserAccessDenied User does not have
permission to perform
the requested
operation.

0x80200000 OpcUa_BadIdentityTokenInvalid The user identity token
is not valid.

182

Chapter 9 - OPC UA Configuration



183

Error Code Symbolic ID Description

0x80210000 OpcUa_BadIdentityTokenRejected The user identity token
is valid but the server
has rejected it.

0x80220000 OpcUa_BadSecureChannelIdInvalid The specified secure
channel is no longer
valid.

0x80230000 OpcUa_BadInvalidTimestamp The timestamp is
outside the range
allowed by the server.

0x80240000 OpcUa_BadNonceInvalid The nonce does
appear to be not a
random value or it is
not the correct length.

0x80250000 OpcUa_BadSessionIdInvalid The session id is not
valid.

0x80260000 OpcUa_BadSessionClosed The session was
closed by the client.

0x80270000 OpcUa_BadSessionNotActivated The session cannot be
used because
ActivateSession has
not been called.

0x80280000 OpcUa_BadSubscriptionIdInvalid The subscription id is
not valid.

0x802A0000 OpcUa_BadRequestHeaderInvalid The header for the
request is missing or
invalid.

0x802B0000 OpcUa_BadTimestampsToReturnInvalid The timestamps to
return parameter is
invalid.

0x802C0000 OpcUa_BadRequestCancelledByClient The request was
cancelled by the client.

0x002D0000 OpcUa_GoodSubscriptionTransferred The subscription was
transferred to another
session

0x002E0000 OpcUa_GoodCompletesAsynchronously The processing will

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

complete
asynchronously.

0x002F0000 OpcUa_GoodOverload Sampling has slowed
down due to resource
limitations.

0x00300000 OpcUa_GoodClamped The value written was
accepted but was
clamped

0x80310000 OpcUa_BadNoCommunication Communication with
the data source is d,
but not established,
and there is no last
known value available.

0x80320000 OpcUa_BadWaitingForInitialData Waiting for the server
to obtain values from
the underlying data
source.

0x80330000 OpcUa_BadNodeIdInvalid The syntax of the node
id is not valid.

0x80340000 OpcUa_BadNodeIdUnknown The node id refers to a
node that does not
exist in the server
address space.

0x80350000 OpcUa_BadAttributeIdInvalid The attribute is not
supported for the
specified Node.

0x80360000 OpcUa_BadIndexRangeInvalid The syntax of the index
range parameter is
invalid.

0x80370000 OpcUa_BadIndexRangeNoData No data exists within
the range of indexes
specified.

0x80380000 OpcUa_BadDataEncodingInvalid The data encoding is
invalid.

0x80390000 OpcUa_BadDataEncodingUnsupported The server does not
support the requested

184

Chapter 9 - OPC UA Configuration



185

Error Code Symbolic ID Description

data encoding for the
node.

0x803A0000 OpcUa_BadNotReadable The access level does
not allow reading or
subscribing to the
Node.

0x803B0000 OpcUa_BadNotWritable The access level does
not allow writing to the
Node.

0x803C0000 OpcUa_BadOutOfRange The value was out of
range.

0x803D0000 OpcUa_BadNotSupported The requested
operation is not
supported.

0x803E0000 OpcUa_BadNotFound A requested item was
not found or a search
operation ended
without success.

0x803F0000 OpcUa_BadObjectDeleted The object cannot be
used because it has
been deleted.

0x80400000 OpcUa_BadNotImplemented Requested operation is
not implemented.

0x80410000 OpcUa_BadMonitoringModeInvalid The monitoring mode
is invalid.

0x80420000 OpcUa_BadMonitoredItemIdInvalid The monitoring item id
does not refer to a
valid monitored item.

0x80430000 OpcUa_BadMonitoredItemFilterInvalid The monitored item
filter parameter is not
valid.

0x80440000 OpcUa_
BadMonitoredItemFilterUnsupported

The server does not
support the requested
monitored item filter.

0x80450000 OpcUa_BadFilterNotAllowed A monitoring filter

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

cannot be used in
combination with the
attribute specified.

0x80460000 OpcUa_BadStructureMissing A mandatory
structured parameter
was missing or null.

0x80470000 OpcUa_BadEventFilterInvalid The event filter is not
valid.

0x80480000 OpcUa_BadContentFilterInvalid The content filter is
not valid.

0x80C10000 OpcUa_BadFilterOperatorInvalid An unregognized
operator was provided
in a filter.

0x80C20000 OpcUa_BadFilterOperatorUnsupported A valid operator was
provided, but the
server does not
provide support for
this filter operator.

0x80C30000 OpcUa_BadFilterOperandCountMismatch The number of
operands provided for
the filter operator was
less then expected for
the operand provided.

0x80490000 OpcUa_BadFilterOperandInvalid The operand used in a
content filter is not
valid.

0x80C40000 OpcUa_BadFilterElementInvalid The referenced
element is not a valid
element in the content
filter.

0x80C50000 OpcUa_BadFilterLiteralInvalid The referenced literal
is not a valid value.

0x804A0000 OpcUa_BadContinuationPointInvalid The continuation point
provide is longer valid.

0x804B0000 OpcUa_BadNoContinuationPoints The operation could
not be processed

186

Chapter 9 - OPC UA Configuration



187

Error Code Symbolic ID Description

because all
continuation points
have been allocated.

0x804C0000 OpcUa_BadReferenceTypeIdInvalid The operation could
not be processed
because all
continuation points
have been allocated.

0x804D0000 OpcUa_BadBrowseDirectionInvalid The browse direction is
not valid.

0x804E0000 OpcUa_BadNodeNotInView The node is not part of
the view.

0x804F0000 OpcUa_BadServerUriInvalid The ServerUri is not a
valid URI.

0x80500000 OpcUa_BadServerNameMissing No ServerName was
specified.

0x80510000 OpcUa_BadDiscoveryUrlMissing No DiscoveryUrl was
specified.

0x80520000 OpcUa_BadSempahoreFileMissing The semaphore file
specified by the client
is not valid.

0x80530000 OpcUa_BadRequestTypeInvalid The security token
request type is not
valid.

0x80540000 OpcUa_BadSecurityModeRejected The security mode
does not meet the
requirements set by
the Server.

0x80550000 OpcUa_BadSecurityPolicyRejected The security policy
does not meet the
requirements set by
the Server.

0x80560000 OpcUa_BadTooManySessions The maximum number
of sessions has been
reached.

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

0x80570000 OpcUa_BadUserSignatureInvalid The user token
signature is missing or
invalid.

0x80580000 OpcUa_BadApplicationSignatureInvalid The signature
generated with the
client certificate is
missing or invalid.

0x80590000 OpcUa_BadNoValidCertificates The client did not
provide at least one
software certificate
that is valid and meets
the profile
requirements for the
server.

0x80C60000 OpcUa_BadIdentityChangeNotSupported The Server does not
support changing the
user identity assigned
to the session.

0x805A0000 OpcUa_BadRequestCancelledByRequest The request was
cancelled by the client
with the Cancel
service.

0x805B0000 OpcUa_BadParentNodeIdInvalid The parent node id
does not to refer to a
valid node.

0x805C0000 OpcUa_BadReferenceNotAllowed The reference could
not be created
because it violates
constraints imposed
by the data model.

0x805D0000 OpcUa_BadNodeIdRejected The requested node id
was reject because it
was either invalid or
server does not allow
node ids to be
specified by the client.

0x805E0000 OpcUa_BadNodeIdExists The requested node id
is already used by

188

Chapter 9 - OPC UA Configuration



189

Error Code Symbolic ID Description

another node.

0x805F0000 OpcUa_BadNodeClassInvalid The node class is not
valid.

0x80600000 OpcUa_BadBrowseNameInvalid The browse name is
invalid.

0x80610000 OpcUa_BadBrowseNameDuplicated The browse name is
not unique among
nodes that share the
same relationship with
the parent.

0x80620000 OpcUa_BadNodeAttributesInvalid The node attributes
are not valid for the
node class.

0x80630000 OpcUa_BadTypeDefinitionInvalid The type definition
node id does not
reference an
appropriate type node.

0x80640000 OpcUa_BadSourceNodeIdInvalid The source node id
does not reference a
valid node.

0x80650000 OpcUa_BadTargetNodeIdInvalid The target node id
does not reference a
valid node.

0x80660000 OpcUa_BadDuplicateReferenceNotAllowed The reference type
between the nodes is
already d.

0x80670000 OpcUa_BadInvalidSelfReference The server does not
allow this type of self
reference on this node.

0x80680000 OpcUa_BadReferenceLocalOnly The reference type is
not valid for a
reference to a remote
server.

0x80690000 OpcUa_BadNoDeleteRights The server will not
allow the node to be
deleted.

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

0x40BC0000 OpcUa_UncertainReferenceNotDeleted The server was not
able to delete all target
references.

0x806A0000 OpcUa_BadServerIndexInvalid The server index is not
valid.

0x806B0000 OpcUa_BadViewIdUnknown The view id does not
refer to a valid view
node.

0x80C90000 OpcUa_BadViewTimestampInvalid The view timestamp is
not available or not
supported.

0x80CA0000 OpcUa_BadViewParameterMismatch The view parameters
are not consistent with
each other.

0x80CB0000 OpcUa_BadViewVersionInvalid The view version is not
available or not
supported.

0x40C00000 OpcUa_UncertainNotAllNodesAvailable The list of references
may not be complete
because the
underlying system is
not available.

0x00BA0000 OpcUa_GoodResultsMayBeIncomplete The server should have
followed a reference to
a node in a remote
server but did not. The
result set may be
incomplete.

0x80C80000 OpcUa_BadNotTypeDefinition The provided Nodeid
was not a type
definition nodeid.

0x406C0000 OpcUa_UncertainReferenceOutOfServer One of the references
to follow in the relative
path references to a
node in the address
space in another
server.

190

Chapter 9 - OPC UA Configuration



191

Error Code Symbolic ID Description

0x806D0000 OpcUa_BadTooManyMatches The requested
operation has too
many matches to
return.

0x806E0000 OpcUa_BadQueryTooComplex The requested
operation requires too
many resources in the
server.

0x806F0000 OpcUa_BadNoMatch The requested
operation has no
match to return.

0x80700000 OpcUa_BadMaxAgeInvalid The max age
parameter is invalid.

0x80710000 OpcUa_BadHistoryOperationInvalid The history details
parameter is not valid.

0x80720000 OpcUa_BadHistoryOperationUnsupported The server does not
support the requested
operation.

0x80BD0000 OpcUa_BadInvalidTimestampArgument The d timestamp to
return was invalid.

0x80730000 OpcUa_BadWriteNotSupported The server not does
support writing the
combination of value,
status and timestamps
provided.

0x80740000 OpcUa_BadTypeMismatch The value supplied for
the attribute is not of
the same type as the
attribute's value.

0x80750000 OpcUa_BadMethodInvalid The method id does
not refer to a method
for the specified
object.

0x80760000 OpcUa_BadArgumentsMissing The client did not
specify all of the input
arguments for the

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

method.

0x80770000 OpcUa_BadTooManySubscriptions The server has reached
its maximum number
of subscriptions.

0x80780000 OpcUa_BadTooManyPublishRequests The server has reached
the maximum number
of queued publish
requests.

0x80790000 OpcUa_BadNoSubscription There is no
subscription available
for this session.

0x807A0000 OpcUa_BadSequenceNumberUnknown The sequence number
is unknown to the
server.

0x807B0000 OpcUa_BadMessageNotAvailable The requested
notification message
is no longer available.

0x807C0000 OpcUa_BadInsufficientClientProfile The Client of the
current Session does
not support one or
more Profiles that are
necessary for the
Subscription.

0x80BF0000 OpcUa_BadStateNotActive The sub-state machine
is not currently active.

0x807D0000 OpcUa_BadTcpServerTooBusy The server cannot
process the request
because it is too busy.

0x807E0000 OpcUa_BadTcpMessageTypeInvalid The type of the
message specified in
the header invalid.

0x807F0000 OpcUa_BadTcpSecureChannelUnknown The SecureChannelId
and/or TokenId are not
currently in use.

0x80800000 OpcUa_BadTcpMessageTooLarge The size of the
message specified in

192

Chapter 9 - OPC UA Configuration



193

Error Code Symbolic ID Description

the header is too large.

0x80810000 OpcUa_BadTcpNotEnoughResources There are not enough
resources to process
the request.

0x80820000 OpcUa_BadTcpInternalError An internal error
occurred.

0x80830000 OpcUa_BadTcpEndpointUrlInvalid The Server does not
recognize the
QueryString specified.

0x80840000 OpcUa_BadRequestInterrupted The request could not
be sent because of a
network interruption.

0x80850000 OpcUa_BadRequestTimeout Timeout occurred
while processing the
request.

0x80860000 OpcUa_BadSecureChannelClosed The secure channel
has been closed.

0x80870000 OpcUa_BadSecureChannelTokenUnknown The token has expired
or is not recognized.

0x80880000 OpcUa_BadSequenceNumberInvalid The sequence number
is not valid.

0x80BE0000 OpcUa_BadProtocolVersionUnsupported The applications do
not have compatible
protocol versions.

0x80890000 OpcUa_BadConfigurationError There is a problem
with the configuration
that affects the
usefulness of the
value.

0x808A0000 OpcUa_BadNotConnected The variable should
receive its value from
another variable, but
has never been
configured to do so.

0x808B0000 OpcUa_BadDeviceFailure There has been a

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

failure in the
device/data source
that generates the
value that has affected
the value.

0x808C0000 OpcUa_BadSensorFailure There has been a
failure in the sensor
from which the value is
derived by the
device/data source.

0x808D0000 OpcUa_BadOutOfService The source of the data
is not operational.

0x808E0000 OpcUa_BadDeadbandFilterInvalid The deadband filter is
not valid.

0x408F0000 OpcUa_
UncertainNoCommunicationLastUsableValu
e

Communication to the
data source has failed.
The variable value is
the last value that had
a good quality.

0x40900000 OpcUa_UncertainLastUsableValue Whatever was
updating this value
has stopped doing so.

0x40910000 OpcUa_UncertainSubstituteValue The value is an
operational value that
was manually
overwritten.

0x40920000 OpcUa_UncertainInitialValue The value is an initial
value for a variable
that normally receives
its value from another
variable.

0x40930000 OpcUa_UncertainSensorNotAccurate The value is at one of
the sensor limits.

0x40940000 OpcUa_
UncertainEngineeringUnitsExceeded

The value is outside of
the range of values d
for this parameter.

0x40950000 OpcUa_UncertainSubNormal The value is derived

194

Chapter 9 - OPC UA Configuration



195

Error Code Symbolic ID Description

from multiple sources
and has less than the
required number of
Good sources.

0x00960000 OpcUa_GoodLocalOverride The value has been
overridden.

0x80970000 OpcUa_BadRefreshInProgress This Condition refresh
failed, a Condition
refresh operation is
already in progress.

0x80980000 OpcUa_BadConditionAlreadyDisabled This condition has
already been disabled.

0x80CC0000 OpcUa_BadConditionAlreadyEnabled This condition has
already been enabled.

0x80990000 OpcUa_BadConditionDisabled Property not available,
this condition is
disabled.

0x809A0000 OpcUa_BadEventIdUnknown The specified event id
is not recognized.

0x80BB0000 OpcUa_BadEventNotAcknowledgeable The event cannot be
acknowledged.

0x80CD0000 OpcUa_BadDialogNotActive The dialog condition is
not active.

0x80CE0000 OpcUa_BadDialogResponseInvalid The response is not
valid for the dialog.

0x80CF0000 OpcUa_BadConditionBranchAlreadyAcked The condition branch
has already been
acknowledged.

0x80D00000 OpcUa_
BadConditionBranchAlreadyConfirmed

The condition branch
has already been
confirmed.

0x80D10000 OpcUa_BadConditionAlreadyShelved The condition has
already been shelved.

0x80D20000 OpcUa_BadConditionNotShelved The condition is not
currently shelved.

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

0x80D30000 OpcUa_BadShelvingTimeOutOfRange The shelving time not
within an acceptable
range.

0x809B0000 OpcUa_BadNoData No data exists for the
requested time range
or event filter.

0x80D70000 OpcUa_BadBoundNotFound No data found to
provide upper or lower
bound value.

0x80D80000 OpcUa_BadBoundNotSupported The server cannot
retrieve a bound for
the variable.

0x809D0000 OpcUa_BadDataLost Data is missing due to
collection
started/stopped/lost.

0x809E0000 OpcUa_BadDataUnavailable Expected data is
unavailable for the
requested time range
due to an un-mounted
volume, an off-line
archive or tape, or
similar reason for
temporary
unavailability.

0x809F0000 OpcUa_BadEntryExists The data or event was
not successfully
inserted because a
matching entry exists.

0x80A00000 OpcUa_BadNoEntryExists The data or event was
not successfully
updated because no
matching entry exists.

0x80A10000 OpcUa_BadTimestampNotSupported The client requested
history using a
timestamp format the
server does not
support (i.e requested
ServerTimestamp

196

Chapter 9 - OPC UA Configuration



197

Error Code Symbolic ID Description

when server only
supports
SourceTimestamp).

0x00A20000 OpcUa_GoodEntryInserted The data or event was
successfully inserted
into the historical
database.

0x00A30000 OpcUa_GoodEntryReplaced The data or event field
was successfully
replaced in the
historical database.

0x40A40000 OpcUa_UncertainDataSubNormal The value is derived
from multiple values
and has less than the
required number of
Good values.

0x00A50000 OpcUa_GoodNoData No data exists for the
requested time range
or event filter.

0x00A60000 OpcUa_GoodMoreData The data or event field
was successfully
replaced in the
historical database.

0x80D40000 OpcUa_BadAggregateListMismatch The requested number
of Aggregates does
not match the
requested number of
NodeIds.

0x80D50000 OpcUa_BadAggregateNotSupported The requested
Aggregate is not
support by the server.

0x80D60000 OpcUa_BadAggregateInvalidInputs The aggregate value
could not be derived
due to invalid data
inputs.

0x80DA0000 OpcUa_BadAggregateConfigurationRejected The aggregate
configuration is not

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

valid for specified
node.

0x00D90000 OpcUa_GoodDataIgnored The request pecifies
fields which are not
valid for the EventType
or cannot be saved by
the historian.

0x00A70000 OpcUa_GoodCommunicationEvent The communication
layer has raised an
event.

0x00A80000 OpcUa_GoodShutdownEvent The system is shutting
down.

0x00A90000 OpcUa_GoodCallAgain The operation is not
finished and needs to
be called again.

0x00AA0000 OpcUa_GoodNonCriticalTimeout A non-critical timeout
occurred.

0x80AB0000 OpcUa_BadInvalidArgument One or more
arguments are invalid.

0x80AC0000 OpcUa_BadConnectionRejected Could not establish a
network connection to
remote server.

0x80AD0000 OpcUa_BadDisconnect The server has
disconnected from the
client.

0x80AE0000 OpcUa_BadConnectionClosed The network
connection has been
closed.

0x80AF0000 OpcUa_BadInvalidState The operation cannot
be completed because
the object is closed,
uninitialized or in
some other invalid
state.

0x80B00000 OpcUa_BadEndOfStream Cannot move beyond
end of the stream.

198

Chapter 9 - OPC UA Configuration



199

Error Code Symbolic ID Description

0x80B10000 OpcUa_BadNoDataAvailable No data is currently
available for reading
from a non-blocking
stream.

0x80B20000 OpcUa_BadWaitingForResponse The asynchronous
operation is waiting for
a response.

0x80B30000 OpcUa_BadOperationAbandoned The asynchronous
operation was
abandoned by the
caller.

0x80B40000 OpcUa_BadExpectedStreamToBlock The stream did not
return all data
requested (possibly
because it is a non-
blocking stream).

0x80B50000 OpcUa_BadWouldBlock Non blocking
behaviour is required
and the operation
would block.

0x80B60000 OpcUa_BadSyntaxError A value had an invalid
syntax.

0x81000000 OpcUa_StartOfStackStatusCodes Begin of status codes
internal to the stack.

0x81010000 OpcUa_BadSignatureInvalid The message
signature is invalid.

0x81040000 OpcUa_BadExtensibleParameterInvalid The extensible
parameter provided is
not a valid for the
service.

0x81050000 OpcUa_
BadExtensibleParameterUnsupported

The extensible
parameter provided is
valid but the server
does not support it.

0x81060000 OpcUa_BadHostUnknown The hostname could
not be resolved.

Chapter 9 - OPC UA Configuration



Error Code Symbolic ID Description

0x81070000 OpcUa_BadTooManyPosts Too many posts were
made to a semaphore.

0x81080000 OpcUa_BadSecurityConfig The security
configuration is not
valid.

0x81090000 OpcUa_BadFileNotFound Invalid file name
specified.

0x810A0000 OpcUa_BadContinue Accept bad result and
continue anyway.

0x810B0000 OpcUa_BadHttpMethodNotAllowed Accept bad result and
continue anyway.

0x810C0000 OpcUa_BadFileExists File exists.

200

Chapter 9 - OPC UA Configuration



CHAPTER

10 CDA CONFIGURATION

CDA is short for Control Data Access. CDA protocol supports peer to
peer communication between ControlEdge 900 controller with C300
controller or ACE or SIM-300 or SIM-ACE or UOC. ControlEdge 900
controller acts as the CDA responder and C300 controller (or the
others mentioned above) acts as the CDA initiator.

It supports:

n Maximum 20 CDA initiators connected to a single ControlEdge
900 CPM

n Maximum 1000 PPS (parameters per second) between CDA
initiators and ControlEdge 900 CPM

n Both read and write access from C300 or ACE or UOC controller

n Read access from SIM-300 or SIM-ACE

n Communication Security including IPsec and embedded Firewall

To configure a CDA responder, perform the following steps:

In this section:

Installing ControlEdge integration service 202

Configuring a CDA Responder 203

Publishing to Experion 205

Publishing when ControlEdge Builder is launched from
Configuration Studio 205

Publishing when ControlEdge Builder is launched separately
on an Experion node 205

Publishing when ControlEdge Builder is launched on non-
Experion node 206

201



Installing ControlEdge integration service
Starting with Experion R501.1, you can communicate with the
following controllers in the Experion PKS system through CDA. You
should install and start the ControlEdge integration service on the
Experion Server.

n C300

n ACE

n Sim-C300

n Sim-ACE

ATTENTION: It is required to install the ControlEdge
integration service on both Experion servers when using
Experion Server redundancy, and all Server nodes in the
Experion Backup Conotrol Center topology.

To install the ControlEdge integration service

1. Insert the ControlEdge Builder Media Kit into the DVD-ROM drive.

2. Browse to the folder ControlEdgeIntegrationService, and double-
click the file ControlEdgeIntegrationService.exe.

3. The ControlEdgeIntegrationService - InstallShied Wizard dialog
appears. Click Next.

4. In the License Agreement page, click I accept the terms in the license
agreement and click Next.

5. In the ExpAcctSvcLP Login page, enter the Username, Password and
Confirm password for the user account that the ControlEdge
Integration Service shall log on as. Click Next.

ATTENTION: The user name must be started with ".\". The
user should have a "Security level" of at least "Engineer" in
the Experion server. See "Configuring system security" in
the Experion Server and Client Configuration Guide for more
information.

6. In the Setup Type page, select the setup type that best suits your
needs. It is recommended to select Complete. Click Next.

7. In the Ready to Install the Program page, click Install to begin the
installation. You can click Cancel to abort the installation.

202

Chapter 10 - CDA Configuration



203

8. The installation is in progress.

9. The InstallShield Wizard Completed dialog appears. Click Finish.

To check the status of the ControlEdge integration service

1. Click Start button of PC, and enter services.msc in the search bar.
The Services dialog appears.

2. Find Honeywell ControlEdge Integration Service, and ensure the
Status is Running. If not, right-click the service and click Start.

3. Check the Startup Type is Automatic. If not, right-click the service
and select Properties, and then select Automatic from the Startup
type drop-down list.

Configuring a CDA Responder
A new project is created and a controller is added to the project in
ControlEdge Builder. See "Creating a project" and "Connecting a
controller" in ControlEdge Builder User's Guide for more details.

To set a controller as a CDA responder

1. From the Home Page, click Configure Ethernet Ports and select
ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

TIP: The IP addresses for the controller and Experion
devices to be communicated must be on the same subnet.

3. Under Protocol Binding, select CDA Responder to bind CDA
responder to the Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. This step ONLY applies to projects with versions prior to R161.
Select CDA from the global variables or local variables you want
to publish to Experion.

See the following table for the data type matching between the
ControlEdge 900 controller variables and Experion Server
parameters.

Chapter 10 - CDA Configuration



Data type in ControlEdge 900
controller Data type in Experion

IEC_BOOL BOOLEAN

IEC_SINT INT8

IEC_INT INT16

IEC_DINT INT32

IEC_USINT UINIT8

IEC_UINT UINT16

IEC_UDINT UINT32

IEC_REAL FLOAT32

IEC_LREAL FLOAT64

IEC_BYTE UINT8

IEC_WORD UINT16

IEC_DWORD UINT32

IEC_ULINT UINT64

IEC_LWORD UINT64

IEC_STRING STRING

IEC_STRUCT See Note 1 below.

Note 1: Structure is a data type of I/O variable, so you should
create a single variable for each parameter in the structure for
CDA communication.

a. Click IEC Programming Workspace from the toolbar.

b. Perform either of the following methods to select CDA.

l From the variable sheets, select CDA.

204

Chapter 10 - CDA Configuration



205

l From the variable properties dialog, select CDA.

6. Click Make to compile the configuration to the controller.

Publishing to Experion
For peer to peer connection to C300 or other Experion CEE based
controller, you need to publish the configuration to the Experion
Server through CDA.

Publishing when ControlEdge Builder is launched
from Configuration Studio
In this scenario, ControlEdge Builder is launched from Configuration
Studio > Control Strategy > ControlEdge Integration > Configure control
strategy, the ControlEdge Builder is already running under the user
credentials supplied from Configuration Studio.

From the Home Page, click Publish to Experion under Programming and
I/O. The project configuration will be published to Experion directly.

Publishing when ControlEdge Builder is launched
separately on an Experion node
In this scenario the Experion client components are available on the
node, but the context for establishing the connection to the Server
and the user credentials are not available from Configuration Studio.

Prerequisites

ControlEdge Builder is launched separately on an Experion node, not
from Configuration Studio.

Chapter 10 - CDA Configuration



1. From the Home Page, click Publish to Experion under Programming
and I/O.

2. Enter Experion server, Domain, User name and Password.
See the following table for the parameter description.

Parameter Description

Experion
server

The base part of the Experion server name you
would like to connect to. For example if you have
redundant Experion Servers, enter the hostname of
the server without the last “A” or “B” letter.

Use current
Windows
account

Connect with current Windows account. If you
select this checkbox, you do not need to enter
Domain, User name or Password.

Domain Domain name.

If you enter ".", it means current application domain.

User name User account name

Password Password for the user account, which is case-
sensitive.

3. Click Publish. A message appears indicating that the configuration
is published successfully. Click OK.

Publishing when ControlEdge Builder is launched on
non-Experion node
The “Experion client components” optional installation package must
be installed from the Experion Installation Media which you want to
communicate with for the Publish to Experion function to work. These
can be installed through the “Optional Components” selection on the
installation media. If these components are not installed, a message
appears indicating “Unable to publish to Experion as client
components are not installed”, but all other ControlEdge Builder
functions should continue to work as expected.

Prerequisites

n The "Experion client components" are installed on the
ControlEdge Builder node.

206

Chapter 10 - CDA Configuration



207

n ControlEdge Builder is installed on a same version of Microsoft
Windows that is supported for either Experion Client or Server
that you want to communicate with. Refer to the Experion
specifications for the specific release for supported operation
system details.

n ControlEdge Builder is launched.

1. From the Home Page, click Publish to Experion under Programming
and I/O.

2. Enter Experion server, Domain, User name and Password.
See the following table for the parameter description.

Parameter Description

Experion
server

The base part of the Experion server name you
would like to connect to. For example if you have
redundant Experion Servers, enter the hostname of
the server without the last “A” or “B” letter.

Use current
Windows
account

Connect with current Windows account. If you
select this checkbox, you do not need to enter
Domain, User name or Password.

Domain Domain name.

If you enter ".", it means current application domain.

User name User account name

Password Password for the user account, which is case-
sensitive.

3. Click Publish. A message appears indicating that the configuration
is published successfully. Click OK.

Chapter 10 - CDA Configuration



208

Chapter 10 - CDA Configuration



CHAPTER

11 MQTT CONFIGURATION

MQTT (Message Queuing Telemetry Transport) is an open OASIS and
ISO standard (ISO/IEC 20922) lightweight, publish-subscribe
network protocol that transports messages between devices. The
protocol runs over TCP/IP, or over other network protocols that
provide ordered, lossless, bi-directional connections.

Controllers support MQTT messaging with Sparkplug B payloads to
communicate with SCADA/IIOT Host since R170.

Configuring MQTT
1. From the Home Page, click Configure Ethernet Ports and select

ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select MQTT to bind MQTT to the Ethernet
port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Under I/O and Communications tab, click Configure Protocols >
MQTT.

6. Click Add Connection, and the Add MQTT Connection dialog appears.

7. Select Ethernet port.

8. Click OK to add MQTT connection.

9. In the Basic Configuration group, configure the following
parameters.

Parameter Description

Broker Type Select the broker type from the drop down list.

1. URL

2. IPv4

209



Parameter Description

Broker
Address

Based on the selected Broker type enter the
address.

1. IPv4 : Enter broker IP address.

2. URL: Enter broker Domain name.

TCP Port The TCP port of MQTT broker.

More Click More, the Broker List dialog appears. You can
add/delete one or more MQTT brokers. For each
broker, you can edit Broker Address and TCP Port.

By default, the controller establishes the
connection with the first broker in the Broker List. If
the external SCADA cannot be accessed via the
current broker, the controller will switch to another
broker and recover the connection.

Up to two brokers can be added in the Broker List.

NOTE: If you want to reorder the broker list,
you need to delete brokers and re-add them
in order.

Clean
Session

Specifies the handling of the Session state.

When this option is checked, the controller will not
receive old Application Messages and has to
subscribe afresh to any topics that it is interested
in each time it connects. When this option is
unchecked, the controller will receive all QoS 1 or
QoS 2 messages that were published while it was
disconnected. Hence, to ensure that you do not
lose messages while disconnected, use QoS 1 or
QoS 2 with CleanSession unchecked.

Keep alive
interval

A time interval measured in seconds. Expressed as
a 16-bit word, it is the maximum time interval that
is permitted to elapse between the point at which
the controller finishes transmitting one Control
Packet and the point it starts sending the next.

Enable TLS Used to enable/disable TLS security for MQTT.

210

Chapter 11 - MQTT Configuration



211

Parameter Description

If this option is enabled, you should configure the
CA certificate. For more information, see "Updating
Trust Chain" in ControlEdge Builder User's Guide.

Enable CRL Used to enable/disable CRL function.

NOTE: It is required to enable TLS if CRL is
enabled.

If this option is enabled, you must configure CRL.
For more information, see "Updating Certificate
Revocation List" in ControlEdge Builder User's
Guide.

Connection
Timeout

Allowed maximum waiting time for the establishing
of network connection between the controller and
MQTT broker.

Client ID Identifier of the controller. The Client ID should be
maximum 23 UTF-8 encoded bytes in length, and
contains only the characters 0~9, a~z and A~Z.

SCADA Host
ID

Identifier of SCADA/IIoT Host. The SCADA Host ID
should be maximum 23 UTF-8 encoded bytes in
length, and contains alphanumeric characters with
the exception of the reserved characters of ‘+’
(plus), ‘/’ (forward slash), and ‘#’ (number sign).

Group ID Identifier of logical grouping of MQTT EoN nodes.
The Group ID should be maximum 23 UTF-8
encoded bytes in length, and contains
alphanumeric characters with the exception of the
reserved characters of ‘+’ (plus), ‘/’ (forward slash),
and ‘#’ (number sign).

Node ID Identifier of MQTT EoN node. The Node ID should
be maximum 23 UTF-8 encoded bytes in length,
and contains alphanumeric characters with the
exception of the reserved characters of ‘+’ (plus), ‘/’
(forward slash), and ‘#’ (number sign).

Chapter 11 - MQTT Configuration



Configure MQTT Store & Forward

The MQTT Store & Forward feature helps users to save the mapping
points as events when the controller loses communication with the
SCADA, which can then be forwarded along with the live data when
communication is restored. See the following figure to understand
the workflow.

10. Prepare SD card to store the events. See Preparing SD card.

11. Click Save MQTT Events to and select Flash or SD card from the drop
down list.

12. Click Store & Forward to display more configuration options.

a. Enable the Store and Forward feature, and configure the
following parameters.

Parameter Description

Delete Used to enable/disable the deletion of the oldest

212

Chapter 11 - MQTT Configuration

Preparing_SD_Card.htm#top


213

Parameter Description

Oldest
Events
on Events
Overflow

events on SD card or Flash card overflow storage

Enable: When a new event arrives, the oldest
event gets deleted when events overflow on SD
card or Flash card.

Disable: No new events stored when events
overflow on SD card or Flash card.

Maximum
Events
to Send

Configure the maximum events to send to
SCADA on every 100 milliseconds.

NOTE: By default, the maximum events to
send is configured as 60 events on every
100 milliseconds.

The configurable range for the Maximum events
to send is:

l Maximum 300 events on every 100
milliseconds.

l Minimum 10 events on every 100
milliseconds.

The following recommended values matrix for
different bandwidths:

Max
Events to
send

Packages
per
Second

Event
Size
(Bytes)

Theory
Bandwidth
(Kbps)

10 10 32 25

20 10 32 50

30 10 32 75

40 10 32 100

50 10 32 125

60 10 32 150

Chapter 11 - MQTT Configuration



Parameter Description

Max
Events to
send

Packages
per
Second

Event
Size
(Bytes)

Theory
Bandwidth
(Kbps)

70 10 32 175

80 10 32 200

90 10 32 225

100 10 32 250

150 10 32 375

200 10 32 500

250 10 32 625

300 10 32 750

See Configure the MQTT Store & Forward feature on the Experion
Quick Builder .
See MQTT Diagnostics for more information.

13. Click Publish to display more configuration options, and configure
the following parameters.

Parameter Description

Topic Topic is part of a MQTT message. All MQTT clients
using the Sparkplug™ specification will use the
following Topic Namespace structure:
namespace/’Group ID’/message_type/‘Node ID’.

QoS Configure the Quality of Service level of the data
topic.

There are 3 QoS levels in MQTT:

l At most once delivery (0)

l At least once delivery (1)

l Exactly once delivery (2)

Payload Select MQTT mapping from the drop-down list. For
more information, see "Adding a MQTT mapping

214

Chapter 11 - MQTT Configuration

../../../../../../Content/ControlEdge PLC/ControlEdge Builder Users Guide/Tasks/Configuring_MQTT.htm#Configur
../../../../../../Content/ControlEdge PLC/ControlEdge Builder Users Guide/Tasks/Configuring_MQTT.htm#Configur
Viewing_system_diagnostics.htm#Click


215

Parameter Description

table" in ControlEdge Builder User's Guide.

Trigger
Type

Select the trigger type.

Event: Publish data when data changes.

Periodic: Publish data periodically.

Interval
(seconds)

The time interval is measured in seconds, and the
default value is 30. It is only configurable when
TriggerType is set to Periodic.

14. In the Subscribe group, specify the QoS level of the subscribe
topics.

15. Click Save.

16. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

17. Click Download from the Home Page to load the configuration of
MQTT to the controller.

Chapter 11 - MQTT Configuration



216

Chapter 11 - MQTT Configuration



CHAPTER

12 IEC60870-5-104 OUTSTATION
CONFIGURATION

ControlEdge 2020 and ControlEdge 900 Controllers, as an
IEC60870-5-104 Outstation, support IEC60870-5 SCADA
communication through Ethernet.

Configuring IEC60870-5-104 Outstation
1. From the Home Page, click Configure Ethernet Ports and select

ETH1 or ETH2.

2. Under Network Setting, select Use the following IP address and enter
the details in the IP Address, Subnet Mask and Gateway fields.

3. Under Protocol Binding, select IEC60870-5-104 Outstation to bind
IEC60870-5-104 Outstation to the Ethernet port.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Under I/O and Communications tab, click Configure Protocols >
IEC60870-5-104 Outstation.

6. Click Add a Master, and the Add IEC60870-5-104 Master dialog
appears.

7. Select Ethernet port and Master Index.

TIP: A maximum of five IEC60870-5-104 masters can be
supported per project.

8. Select Enable Channel Redundancy.

NOTE: This option is ONLY available for Ethernet port
ETH1.

9. Click OK to add a master.
If you select Enable Channel Redundancy, both ports ETH1 and
ETH2 appear. They share a single configuration form at ETH1.

10. In the General group, configure the following parameter.

217



Parameter Description

TCP Port Configure TCP port number, ranging from 1 to
65535. The default value is 2404.

11. In the Link Layer Parameters group, configure the following
parameters.

Parameter Description

Timeout t1: Time out of send or test Application
Protocol Data Units (APDUs), ranging
from 1000 ms to 255000 ms.

t2: Time out for acknowledges in case
of no data messages, ranging from
1000 ms to 255000 ms.

t3: Time out for sending test frames in
case of a long idle state, ranging from
1000 ms to 255000 ms.

K/W K: Maximum difference receive
sequence number to send state
variable, ranging from 1 to 32767.

W: Latest acknowledge after receiving
w I format APDUs, ranging from 1 to
32767.

12. In the Application Parameters group, configure the following
paramters.

Parameter Description

ASDU Address Length of common address of Application-
layer Service Data Unit (ASDU), ranging from
1~65535. The default value is 1.

Mapping Select the required mapping table from the
drop-down list. If the Mapping is empty, you
must add a mapping table first. See Adding an
IEC60870-5-104 Outstation mapping table
for more information.

For redundant channel, the same mapping
table must be selected on multiple ports. For

218

Chapter 12 - IEC60870-5-104 Outstation Configuration

../../../../../../Content/ControlEdge PLC/ControlEdge Builder Users Guide/Tasks/Adding_an_IEC60870-5-104_Outstation_Mapping_Table.htm
../../../../../../Content/ControlEdge PLC/ControlEdge Builder Users Guide/Tasks/Adding_an_IEC60870-5-104_Outstation_Mapping_Table.htm


219

Parameter Description

example, this could be used when a SCADA
system communicates through 2 ports in a
redundant arrangement.

For individual channel:

One mapping table can be used for multiple
ports.

Cyclic Interval The interval of cyclic data transmission via the
IEC 60870-5-104 port.

Select-Before-
Operate Timeout

Represents the maximum time (in seconds)
allowed for the operation to be executed.

If the operation is a direct command, the time
is only from the time the "operation" is sent to
the time the confirmation is received from the
other end.

If it is "Select Before Operate", it is the time
when the "Select" command is sent to the
completion of the execute command by the
controller sending a confirmation packet.

Clock
Synchronization

Enable time synchronization from the
IEC60870-5-104 master.

NOTE: Only one master can be enabled
time synchronization.

Single Points
Event

Used to report events related to a single point
with two options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : BOOL

Double Points
Event

Used to report events related to a double point
with two options:

Chapter 12 - IEC60870-5-104 Outstation Configuration



Parameter Description

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : SINT , USINT

Analog Point
(Scaled) Event

Used to report events related to an analog
point (Scaled) with two options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : INT , UINT

Analog Point
(Normalized)
Event

Used to report events related to an analog
point (Normalized) with two options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : INT , UINT

Analog Point
(Short float)
Event

Used to report events related to an analog
point (Short float) with two options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : REAL

Bit String Event Used to report events related to a bit string
with two options:

220

Chapter 12 - IEC60870-5-104 Outstation Configuration



221

Parameter Description

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : DWORD

Step Event Used to report events related to Step with two
options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : SINT ,USINT

Counter Used to report events related to Counter with
two options:

l Sequence Event: stores all the value
changes during the communication loss
with the master.

l Current: stores the latest value during the
communication loss with the master.

l Supported data type : DINT , UDINT

13. Select Flash or SD card from the drop-down list besides Save Events
to:.

o If you want to save events to SD card, you must allocate the
space for the events first. See Preparing SD card for more
information.

o Up to 50,000 events can be saved to Flash per controller.

o Up to 150,000 events can be saved to SD card per controller.

14. Click Save.

Chapter 12 - IEC60870-5-104 Outstation Configuration

../../../../../../Content/ControlEdge PLC/ControlEdge Builder Users Guide/Tasks/Preparing_SD_Card.htm


15. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

16. Click Download from the Home Page to load the configuration of
MQTT to the controller.

222

Chapter 12 - IEC60870-5-104 Outstation Configuration



CHAPTER

13 USER DEFINED PROTOCOL

See the following rules for using user defined protocol:

n User defined protocol can be bound on RS232 and RS485 ports.
For each serial port, it allowed to connect one device via user
defined protocol.

n Two function blocks are provided: COM_SEND and COM_RECV.
n Another function block CRC_16 can be used to handle CRC.
n You can make data type and use function blocks under library
PROCONS to group or ungroup data frame.

Configuring User Defined Protocol
A new project is created and a controller is added to the project in
ControlEdge Builder. See "Creating a project" and "Connecting a
controller" in ControlEdge Builder User's Guide for more details.

To configure the User Defined Protocol:

For ControlEdge RTU:

1. From the Home Page, click Configure Serial Ports and select RS232-
1 , RS232-2, RS485-1 or RS485-2.

2. Under General, select the target options in all fields.

3. Under Protocol Binding, select User Defined to bind it to the serial
port.
When you select this option, the Delimiter Mode (Optional) panel
appears including three settings: Read-interval Timeout (ms), Max
Length (Bytes) and End Delimiter (Hex). You can configure them
optionally to validate if a data frame is sent completely.

l Read-interval Timeout (ms): The interval between the last data
packet sent and the first keepalive probe, ranging from 0 to
10000 (ms). If the interval between the arrivals of any two
bytes exceeds this Timeout, system regards it has already
received a complete data frame.
The default value is 0 which means this option is disabled.

223



l Max Length (Bytes): The maximum number of bytes for a data
frame, ranging from 0 to 1024. If the length of a received data
frame exceeds the Max Length, system regards it has already
received a complete data frame.
The default value is 0 which means this option is disabled.

l End Delimiter (Hex): Configured special characters in
hexadecimal and based on bytes validates if a data frame is
sent completely. If the received data frame has same
characters with the End Delimiter, system regards it has
already received a complete data frame.
The default setting is blank which means this option is
disabled.

4. Click Save to save the configuration, and click Back to return to the
Home Page.

5. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

6. Click Download from the Home Page to load the configuration of
User Defined protocol to the controller.

For ControlEdge PLC:

1. From the Home Page, under I/O and Communications, click
Configure Modules > Configure Serial Modules.

2. Click Add Serial Module, the Add Serial Module dialog appears.

3. Select the Type, assign the Rack and Slot for the module.

4. Click OK to add the serial module.

5. Select a serial module. There are four serial ports to be
configured, RS232-1, RS232-2, RS485-1 and RS485-2. Select the
target port and configure appropriate values for the parameters.

6. Under Protocol Binding, select User Defined from the Port Protocol
drop-down list.
See the above corresponding information of ControlEdge RTU for
Delimiter Mode (Optional). But for ControlEdge PLC, the maximum
number of Max Length (Bytes) bytes for a data frame, ranging from
0 to 532.

7. Click Save to save the configuration, and click Back to return to the
Home Page.

224

Chapter 13 - User Defined Protocol



225

8. Click Connect from the Home Page to connect a controller. For the
user name and password, see "User Privileges" in ControlEdge
Builder User's Guide.

9. Click Download from the Home Page to load the configuration of
User Defined protocol to the controller.

Creating a data type for User Defined Protocol
Before you begin to program the function blocks, you should create a
data type for the user defined protocol.

See the following table for reference of the frame structure:

No Message Size
(Bytes) Type Remarks

0 STX 1 HEX 0X02

1 ADDR 2 HEX Group ID, Tracker ID
(0X01~0xFF)

2 CMD 4 HEX SSF, BRO, CTG, ACK
(0X01~-xFF)

3 DATA 4 HEX Direction Mode Control,
Wind Speed[option], GPS
(HEX)

4 CRC16 2 HEX 0x??0x??

5 ETX 1 HEX 0x03

Sum 14

And refer to the following picture as an example:

Chapter 13 - User Defined Protocol



Configuring User Defined Protocol Function
Block

Follow the instructions below to program the target device for the
project in IEC Programming Workspace.

To configure a User Defined Protocol function block:

1. From the IEC Programming Workspace, under the Project Tree
Window, right-click Logical POUs and select Insert > Program.

2. Enter the Name for the new POU, and select the desired
programming Language. For the following steps, FBD language is
used as an example.

3. Click OK to insert the new POU in the project tree.
4. Add a Task as follows:

a. Under Physical Hardware, right-click Task and select Insert > Task.
b. Enter the Name and select the task type as CYCLIC, and click

OK.
c. In the Task settings dialog, configure the corresponding

parameters.
d. Click OK.

5. Right-click the task you have inserted, and select Insert > Program
instance.

6. Enter a name in the Program instance field.
The program instance must not be named “RTU” or
“GlobalVariable”.

7. Select the program you want to associate from the Program type
drop-down list.

226

Chapter 13 - User Defined Protocol



227

8. Right-click Libraries and select Insert > Firmware Library, select
UserDefined.fwl under UserDefined folder. Then click Include.

9. Under Logical POUs, double-click the code worksheet of the
program that you have inserted.

10. From the Edit Wizard, select UserDefined from the Group list. There
are two function blocks available for programming: CMD_RECV
and CMD_SEND.

11. Drag the target function block into the workplace to display the
function block.
For more information about the function block, right-click it and
select Help on FB/FU to display the embedded help.

12. Create a data type for User Defined Protocol. See Creating a data
type for User Defined Protocol for more information.

13. Double-click the pin-outs of the function block to assign
variables.

Assign Initial value and I/O address details.

14. Use function block under PROCONS to group or ungroup data
frame.

Chapter 13 - User Defined Protocol



You can click View-->Watch Window and add the corresponding
variables to monitor.

228

Chapter 13 - User Defined Protocol



229

15. Click OK.
16. Click Make from the toolbar to compile the programs.
17. Click Download from the toolbar to download the compiled

programs to the controller.

Chapter 13 - User Defined Protocol



NOTICES

Trademarks

Experion® is a registered trademark of Honeywell International, Inc.

ControlEdge™ is a trademark of Honeywell International, Inc.

OneWireless™ is a trademark of Honeywell International, Inc.

Other trademarks

Microsoft and SQL Server are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or
other countries.

Trademarks that appear in this document are used only to the benefit
of the trademark owner, with no intention of trademark infringement.

Third-party licenses

This product may contain or be derived from materials, including
software, of third parties. The third party materials may be subject to
licenses, notices, restrictions, and obligations imposed by the
licensor. The licenses, notices, restrictions and obligations, if any,
may be found in the materials accompanying the product, in the
documents or files accompanying such third party materials, in a file
named third_party_licenses on the media containing the product, or
at http://www.honeywell.com/en-us/privacy-statement.

Documentation feedback

You can find the most up-to-date documents in the Support section
of the Honeywell Process Solutions website at:
https://process.honeywell.com/us/en/support/product-

documents-downloads

If you have comments about Honeywell Process Solutions
documentation, send your feedback to: hpsdocs@honeywell.com

Use this email address to provide feedback, or to report errors and
omissions in the documentation. For immediate help with a technical
problem, contact HPS Technical Support through your local
Customer Contact Center, or by raising a support request on the
Honeywell Process Solutions Support website.

230

Notices

http://www.honeywell.com/en-us/privacy-statement
https://process.honeywell.com/us/en/support/product-documents-downloads
https://process.honeywell.com/us/en/support/product-documents-downloads
mailto:hpsdocs@honeywell.com


231

How to report a security vulnerability

For the purpose of submission, a security vulnerability is defined as a
software defect or weakness that can be exploited to reduce the
operational or security capabilities of the software.

Honeywell investigates all reports of security vulnerabilities affecting
Honeywell products and services.

To report a potential security vulnerability against any Honeywell
product, please follow the instructions at:

https://www.honeywell.com/en-us/product-security.

Support

For support, contact your local Honeywell Process Solutions
Customer Contact Center (CCC). To find your local CCC visit the
website, https://process.honeywell.com/us/en/contact-us.

Training classes

Honeywell holds technical training classes that are taught by process
control systems experts. For more information about these classes,
contact your Honeywell representative, or see
http://www.automationcollege.com.

Notices

https://www.honeywell.com/en-us/product-security
https://process.honeywell.com/us/en/contact-us
http://www.automationcollege.com/


232

Notices


	Chapter 1 - About this guide
	Chapter 2 - Overview
	Chapter 3 - HART Configuration
	Configuring a HART IP Server
	Configuring a HART Function Block

	Chapter 4 - DNP3 Outstation Configuration
	Configuring a DNP3 Outstation

	Chapter 5 - DNP3 Master Configuration
	Configuring a DNP3 Master
	Programming a DNP3 Master
	Description of DNP3 Master Function Block
	DNP3_RD
	DNP3_WR
	Description of CONFIG_INFO
	Description of Input and Output Data Type
	DNP3 Master Protocol Error Codes


	Chapter 6 - Enron Modbus Slave Configuration
	Configuring an Enron Modbus Slave

	Chapter 7 - Modbus Slave Configuration
	Configuring a Modbus Slave

	Chapter 8 - Modbus Master Configuration
	Modbus TCP Master
	Configuring a Modbus TCP Master
	Programming a Modbus TCP Master

	Modbus Serial Master
	Configuring a Modbus Serial Master
	Programming a Modbus Serial Master

	Description of Modbus Function Block
	Read Single Coil
	Read Multiple Coils
	Read Single Discrete Input
	Read Multiple Discrete Inputs
	Read Single Input Register
	Read Multiple Input Registers
	Read Single Holding Register
	Read Multiple Holding Registers
	Write Single Coil
	Write Single Holding Register
	Write Multiple Coils
	Write Multiple Holding Registers
	Description of CONFIG_INFO
	Description of Input and Output Data Type
	Modbus Protocol Error Codes
	Endian Mode


	Chapter 9 - OPC UA Configuration
	Introduction
	OPC UA Security
	Security Objectives
	Application Instance Certificates
	OPC UA Certificate Management
	OPC UA Server Security
	OPC UA Client
	Securing a Connection

	OPC UA Server
	System Architecture and Profiles
	Accessing the Server Object
	Server Diagnostics
	Accessing ControlEdge PLC data
	Program Variable NodeIds
	Data Types
	Configure ControlEdge 900 controller OPC UA Server

	OPC UA Client
	IEC 61131-3 OPC UA Function Blocks
	MDIS function block library
	Usage Considerations
	Establishing Connection with HonUaConnectSecurityNone
	Accessing the Address Space of target OPC UA Server
	Obtaining Nodelds with HonUaTranslatePathList
	Reading a single variable
	Reading a list of variables
	Writing a single variable
	Writing a list of variables
	Calling a Method
	Subscribing for single variable notifications
	Terminate Connection with HonUaConnectSecurityNone
	Monitoring the target OPC UA Server handle
	Detecting Boolean Resets
	Converting Variant Values to String

	Configuring an OPC UA Client
	Example logic for reading list of variables from OPC UA Server


	OPC UA project sizing and performance
	OPC UA Project Sizing
	OPC UA Client Performance
	OPC UA Server Performance
	MDIS OPC UA Project Sizing
	MDIS OPC UA Client Performance
	MDIS OPC UA Server Performance

	OPC UA Error Code Reference

	Chapter 10 - CDA Configuration
	Installing ControlEdge integration service
	Configuring a CDA Responder
	Publishing to Experion
	Publishing when ControlEdge Builder is launched from Configuration Studio
	Publishing when ControlEdge Builder is launched separately on an Experion node
	Publishing when ControlEdge Builder is launched on non-Experion node


	Chapter 11 - MQTT Configuration
	Configuring MQTT

	Chapter 12 - IEC60870-5-104 Outstation Configuration
	Configuring IEC60870-5-104 Outstation

	Chapter 13 - User Defined Protocol
	Configuring User Defined Protocol
	Creating a data type for User Defined Protocol
	Configuring User Defined Protocol Function Block

	Notices

